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Generalized Black-Litterman with Decision Fusion

Abstract

The Black–Litterman asset allocation model provides an intuitive insight for combining market (equi-

librium) views with investors’ views within the Markowitz mean-variance framework, in which three key

inputs are used: the reference portfolio, the investors’ views, and the covariance matrices. The classical

version uses the Capital Asset Pricing Model (CAPM) to calibrate the reference portfolio and assumes

investor’s views are correctly specified. However, the CAPM anomalies reported in the asset pricing liter-

ature suggest that holding a reference portfolio proportional to the market capitalization may be grossly

inadequate, and investors often do not have perfect knowledge of the process associated with macro vari-

ables or stock returns, to make intelligent estimates of the future asset returns. Furthermore, it has been

observed that the deterministic volatility models are too restrictive for many financial time series. In this

paper we address three potential weaknesses that lie within the allocation framework. We formulate a

decision-fusion model that provides a straightforward way for investors to quantify their uncertain knowl-

edge and ignorance in the estimation of views. The reference portfolio is constructed using a portfolio

combination strategy that accounts for the estimation error, and the specification error associated with

the CAPM. Finally, we propose a diversification-based GLASSO-Wishart model for the analysis of the re-

alized covariance matrix. Experimenting with four datasets, we construct portfolios whose out-of-sample

Sharpe ratio is consistently and significantly higher than the näıve diversification, in the absence and

presence of transaction costs. The newly obtained strategy outperforms eleven well-studied benchmark

strategies in terms of risk-reward maximization.

1 Introduction

Selecting portfolios of financial assets to maximise returns for a given level of risk begins with the

theoretically rather beautiful mean-variance framework laid down by Markowitz (1952) In his setup, the

two key inputs for optimization are the means and the covariance matrix of asset returns. However, the

implementation of the mean-variance framework is practically hindered by the need to estimate these inputs

based on the time-series of historical returns. It is now well-known that, because of the resulting sampling

errors, mean-variance portfolios frequently perform poorly out-of-sample. Optimized mean-variance portfo-

lios often imply extreme long and short positions unless constraints are added. Furthermore, the optimized

weights under the mean-variance framework based on the sample estimators of the first two moments are

often highly concentrated, especially when no-short-selling constraints are absent (Best and Grauer (1991),

Green and Hollifield (1992). In fact, it has been widely recognized that the benefits of optimal diversi-

fication may be completely eliminated by parameter estimation uncertainty (Board and Sutcliffe (1994),

DeMiguel et al. (2009)). Nevertheless, progress has been made following Black and Litterman (1992), who

allow the investors to blend market views (statistical information on asset returns) with investors’ views

(private information) in the framework of Markowitz’s optimization. In this paper, we extend this line of

research in addressing the weaknesses of the classical Markowitz’s model and propose three methodological

contributions that improve the performance of the Black and Litterman approach.

The original Black-Litterman model (henceforth, BLM) is an intellectual milestone in two respects.

First, it provides a useful prior, the market portfolio, as a starting point for the estimation of asset expected

returns. Views of the market portfolio, which are typically taken as the equilibrium expected returns

calibrated via the Capital Asset Pricing Model (CAPM), can summarize non-sample information and are

less sensitive to parameter estimation uncertainty than estimations based on time-series of returns. Second,

it allows judgemental investors to provide views or forecasts on asset returns, which are combined with the

equilibrium expected returns to reflect a mingling of statistical information and private information on asset

returns. Investors should hold the capitalization-weighted portfolio when their views are consistent with

the market. When investors have proprietary views on the absolute or relative performance of the assets,

they should deviate from the market portfolio, according to the strength of their views. The blending of
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viewpoints enhances the process for return estimation. Note that in the original BLM, the equilibrium

expected returns are obtained by an inverse optimization, which is essentially a function of degree of risk-

aversion, covariance matrix, and market capitalization weights, rendering the estimation of covariance matrix

as equally important for practical applications. Because of its rich theoretical foundation, BLM has led to

the development of various modern portfolio selection framework (He and Litterman (2002), Idzorek (2007),

Bertsimas et al. (2012), Walters (2014), Bessler et al. (2017), Platanakis et al. (2021)).

Within BLM, the process for discovering investors’ views is very flexible. BLM does not require in-

vestors to provide return forecasts on all assets managed in the investment universe. The views can be

expressed as absolute or relative performances and the ways of formulating them are miscellaneous. A com-

monly used quantitative approach is the factor view blending framework proposed by Fabozzi et al. (2006),

where views are taken as the expected returns of long-short portfolios generated by using a cross-sectional

momentum strategy. The framework was extended by Jones et al. (2007), Giacometti and Mignacca (2010),

Harris et al. (2017), Kolm and Ritter (2020) and was also generalized by Cheung (2013), who proposes a

ranking-free factor-mimicking approach with general distributions. A different approach presented in Beach

and Orlov (2007) uses GARCH-derived views to capture stylized facts about asset returns (e.g., thick tails,

volatility clustering) and dynamics of the central location measure and variances of returns. Fernandes et al.

(2018) propose an autoregressive model with past returns and price-earnings data to update the conditional

probability distribution of asset returns. Based on properties of an arbitrary return distribution, Xiao

and Valdez (2015) extend Meucci (2005)’s market portfolio approach assuming views follow a generalized

elliptical distribution. Meucci (2006) proposes a Copula Opinion Pooling approach to derive non-normal

views, however, as point out in Palczewski and Palczewski (2019), the approach lacks a formal statistical

background and cannot nest the original BLM for normal distribution of returns.

The literature of BLM has so far relied primarily on trading strategies and on the distributional

properties of financial returns to estimate investors’ views. Nevertheless, investors generally do not have

perfect knowledge of the process associated with macroeconomic variables, or the stock returns, but instead

need to make intelligent estimates on the future asset returns using all the information available to them

(Ozoguz (2009)). Several studies show that investors’ uncertainty over factors related to the state of economy

(uncertain knowledge) can affect asset returns (Segal et al. (2015)). On the other hand, the exogenous

characteristics of investors imply a possibility in which: (i) investors are unable to make forecasts based

on the macroeconomic variables and historical data of asset returns, due to insufficient knowledge (referred

as ‘ignorance’ in this study) and (2) investors may receive conflicting information from the data on which

forecasts are based. In short, one should allow for uncertainty and ignorance over the information available

to investors in the process of return estimation. A potential shortcoming of BLM is that the relationship

between uncertain knowledge and the views has been a missing link; indeed, the model assumes that

investors’ views are correctly specified and then downweighs the forecasting information available in the

views using the confidence levels. We notice that subsequent studies have largely ignored the role of

investors, their uncertain knowledge and ignorance, though an exception is presented by Silva et al. (2017),

who suggest a qualitative approach to incorporate investors’ profile by using Verbal Decision Analysis.

The original BLM assumes that the vectors of equilibrium expected returns are correctly specified,

which is generally not the case. For example, the equilibrium relationship hinges on the validity of CAPM,

yet CAPM is empirically rejected (Zhou (2009)). The impact of specification error in the CAPM has long

been recognized. This can be traced back to Roll (1977), who shows that the CAPM is not testable.

Gibbons et al. (1989), Zhou (1991) and Engel and Rodrigues (1993) find the CAPM rejected by data and

risk-aversion estimates derived from it are usually insignificantly different from zero. Thus, holding an

equilibrium portfolio proportional to market capitalization is liable to be misleading. As suggested by Chen

and Lim (2020) and Kolm et al. (2021), there are a number of factors in addition to the market factor that are

pivotal for the derivation of the equilibrium expected returns. From an analytical point of view, Zhou (2009)

argues that a capitalization-weighted portfolio is not sufficient to inform the prior because the historical

asset returns contain beneficial information about future asset returns and dynamics of asset returns (regime
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change) which the equilibrium model completely overlooks. This leads to an incorporation of historical asset

returns and a data-generating process into the BLM. The intuition is supported by Geyer and Lucivjanská

(2016), who combine the equilibrium model with the expected returns from a predictive regression to form

a data-driven prior. Subsequently, Kolm and Ritter (2020) propose a Bayesian extension to incorporate

views and priors on factor risk premiums. Kolm et al. (2021) summarize literature contributions on the

development of a data-driven prior.

BLM also assumes that asset returns follow multivariate normal distribution and have a constant con-

ditional distribution. Both hypotheses are unrealistic when applied to financial asset returns. Ferson et al.

(1987) and Jr et al. (1991) argue that investors perceive a time-varying conditional expectation of returns.

Harvey (1989) shows that conditional covariances do change over time and there is overwhelming empirical

evidence showing that return distributions are far from being Normal (Ang and Chen (2002)). Many stud-

ies generalize asset returns beyond the Gaussian (Normal) distribution (Meucci (2006); Giacometti et al.

(2007); Xiao and Valdez (2015); Pang and Karan (2018); Palczewski and Palczewski (2019)). Nevertheless,

little attention has been paid to relax the assumption of constant conditional distribution. Palomba (2008)

constructs tracking error constrained BL portfolios in which conditional expected returns and covariance

matrix are estimated by a Flexible Dynamic Conditional Correlation model. Harris et al. (2017) generalize

the BLM to a fully-dynamic environment, adjusting covariance estimates using an Exponential Weighted

Moving Average model and a Dynamic Conditional Correlations model. An alternative approach is pre-

sented by Sahamkhadam et al. (2021), who model dynamics in the realized covariance matrix using the

joint distribution obtained from a GARCH-copula model to capture the asymmetries in the tail distribu-

tion. However, none of these studies allow for a stochastic variation in the conditional covariances of returns.

It is well-documented that financial markets exhibit very complex dynamics, and the stylized facts are non-

trivial; for example, fat-tailed distribution of the conditional mean innovations and leverage effect via the

correlation between volatility and mean innovations (Jacquier et al. (2004)). It has been observed that

the deterministic models are too restrictive for many financial time series (Harvey et al. (1994); Fridman

and Harris (1998)). Consequently, stochastic volatility models receive much attention for portfolio selection

problems owing to their greater flexibility over the GARCH family, analytical tractability, and parsimonious

use of free parameters (see Moura et al. (2020)). We note, however, that many existing refinements of BLM

stay closely to sample covariance or multivariate GARCH models and discussion around the stochastic

volatilities is rather limited.

The objective of this paper is to address the three shortcomings, above, contained within BLM. First,

we propose a portfolio combination strategy for the estimation of equilibrium expected returns. The perfor-

mance of the new reference portfolio is strictly related to the prespecified benchmarks: näıve diversification,

and the minimum-variance portfolio. Given that the strategy mix is a weighted-average of the two bench-

marks and is derived from perceptions of a future risk-reward ratio, this leads investors to consistently

update the prior via data and modify their existing holdings towards assets that they favour. Second, we

characterize views as solutions to a decision-fusion system. We assume that investors hold a set of hy-

potheses on future market conditions and then narrow down their hypothesis set with the accumulation of

evidence from various sources. The fusion system, which is overlaid with the Dempster-Shater Theory of

Evidence (Dempster (1968); Shafer (1976)), can exploit complementary knowledge from different classifiers,

taking advantage of the correct decisions produced by each classifier and dealing with conflicting decisions,

eventually leading to more reliable views on the market. Finally, to reduce the sensitivity of our approach

to parameter uncertainty, we propose a variation of the Wishart Stochastic Volatility model of Uhlig (1994),

Uhlig (1997), which we call the GLASSO-Wishart model. Specifically, we restrict the covariance matrix of

the Wishart distribution to a sparse parameterization using the Graphical LASSO (GLASSO) approach, in

which the shrinkage is proportional to the diversification distribution among assets.

Our paper makes three methodological contributions to the literature on BLM. First, we propose using

an entropy-based decision fusion system to identify investors’ views. The novelty of the decision fusion

system relative to the extant literature on BLM is to provide a straightforward way for investors to quantify
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uncertain knowledge and ignorance in a decision-making scenario. The framework accounts specifically for

the exogenous characteristics of investors, e.g., the possibility that one cannot assign beliefs (a measure of

support) to any atomic hypothesis due to insufficient information being available. In this case, the functions

and the combination rules of the Dempster-Shafer Theory of Evidence enable investors to represent their

lack of knowledge, without forcing them to overcommit when they are ignorant. In this paper, the evidence

we obtain for one hypothesis is the individual belief produced by each classifier, which is a function of: the

Euclidean distance between the reference value and the class probability estimated by each classifier; and

the entropy-based weight, derived from the wealth of information each classifier has accessed. For each

hypothesis, the individual beliefs produced by each of the classifiers are aggregated into a uniform one,

representing the combination of confidences in this decision. We provide explicit expressions for combining

the individual beliefs (evidence), and select parameters using Adaptive Moment Estimation. Finally, we

show how the fused decision can be converted into the future asset returns. To our knowledge, this is the

first study that generalizes BLM to incorporate a decision-fusion process.

Second, in our Bayesian setup, views of the reference portfolio are obtained through a novel portfolio

combination technique. This is inspired by a series of papers by Kan and Zhou (see Kan and Zhou (2007),

Kan et al. (2021)) where they derive optimal portfolio combination rules that maximize the expected utility

under estimation risk. The intuition underlying their model is to diversify the estimation risk by holding

a combination of risky portfolios (with a risk-free asset). In this study, we characterize the equilibrium

model as an adaptive data-driven framework for which we provide explicit formulas obtaining the reference

portfolio weights. We design two intuitive priors: the equally-weighted and the minimum-variance portfolio

(portfolios relying on the expected returns are disregarded since the true expected returns are difficult to

estimate and unduly affect the portfolio weights). For each prior, we determine the future value (reward-to-

risk) of this prior by using sparse regression forecasts (LASSO, Tibshirani (1996)) and jointly combine the

two priors into a new Bayesian prior (the reference portfolio). This leads investors to consistently modify

existing holdings with data by selecting allocations which are derived from the historical sample mean,

sample volatilities, and the expected reward-to-risk. Our approach, therefore, connects to quantitative

asset allocation (e.g., Brodie et al. (2009)) and Bayesian decision making models.

Third, we introduce a diversification-based GLASSO-Wishart model, for analysis of the realized covari-

ance matrices of asset returns, and show how estimation risk can be reduced by restricting the matrix of a

Wishart distribution to a sparse parameterization with L-1 penalty. The new generalization follows from the

Wishart Stochastic Volatility (WSV) model, which possess three key benefits. First, it naturally guarantees

positive definiteness of the covariance matrix. Second, the model is well-suited for handling large systems

of asset returns because the dynamics of WSV are controlled by just a single factor. Third, by imposing

such a single factor structure, estimation errors can be reduced since fewer parameters are to be estimated.

These advantages were first documented in the academic literature by Uhlig (1994), Uhlig (1997) and have

thereafter been shown to be present in a high-dimensional data setting by Moura et al. (2020). To account

further for estimation risk, we impose sparse parameterization on the Wishart specification based on the

Graphical LASSO (GLASSO) model. Our choice of GLASSO is motivated by its computational efficiency

and interpretability for interdependencies between assets. The choice of regularization parameter relies on a

popular heuristic optimizer, the Genetic Algorithm. Our approach relates to a vast literature on the sparse

covariance estimation (see Banerjee et al. (2008); Friedman et al. (2008)). However, our paper differs in

that we introduce heterogenous regularizations based on the diversification distribution among assets.

We perform out-of-sample back-testing based on four Fama-French datasets that are typically used in

the empirical asset management literature: the 17 industry portfolios, the 30 industry portfolios, the 10

size and short-term reversal portfolios and the 25 size and short-term reversal portfolios for the US equity

market. For all datasets examined, we find a consistent and significant increase in Sharpe ratio compared

with the 1/N strategy, both in the absence and presence of transaction costs. In terms of risk-reward

maximization, we observe GBL outperforming the classic Black-Litterman, Markowitz mean-variance, and

various allocation strategies that have been proposed in the literature to manage estimation risk, including
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the covariance shrinkage technique of Ledoit and Wolf (2003), the Bayes-Stein shrinkage rules of Jorion

(1986), the non-optimization based rules of risk-parity and reward-to-risk timing rule of Kirby and Ostdiek

(2012). The performance of GBL is also more stable compared with all benchmark strategies when short

positions are allowed. Finally, relative to the GBL portfolios adopting an optimal portfolio combination or

GLASSO-Wishart covariances alone, we find that GBL adopting both strategies perform better, particularly

for datasets with a relatively large number of risky assets. Since incorporating more risky assets involves a

higher level of estimation risk, our findings suggest that, by using an optimal combining strategy together

with the GLASSO-Wishart model for generating BLM’s inputs, we are able to reduce the sensitivity of the

optimization to the estimation errors.

To check the sensitivity of our results to the different assumptions, we also perform robustness exper-

iments for all allocation strategies and datasets considered after relaxing the assumptions we have made.

The exercises include the alternative risk aversion level; alternative estimation window size; alternative re-

liability measure of equilibrium expected returns; alternative holding period; and alternative choice of base

models. The key findings are qualitatively and quantitatively similar to the findings reported in this paper.

The remainder of the paper is structured as follows. Section 2 presents novel methods for modelling

the investors’ views, the reference portfolio, the time-varying covariance matrix, and the Black-Litterman

optimization procedures adapted to incorporate these novel approaches. Section 3 presents the data. The

realized, out-of-sample empirical performance of our methods is discussed in Section 4. Section 5 describes

a series of robustness checks and section 6 concludes.

2 Methodology

In this section, we present the numerical methods for computing investors’ views, reference portfolio,

and covariance matrix, i.e., for all the inputs of our GBL methodology. We describe the process of incorpo-

rating these three components into our BLM framework. We begin with a short presentation of the BLM

to pave the way for our contribution in the estimation of the three inputs.

2.1 Portfolio Optimization

Consider a portfolio choice problem in which an investor chooses the optimal portfolio among N risky

assets. Let rt be the returns of the N risky assets at time t, characterized by a conditional covariance matrix

Σt. As explained by Black and Litterman (1992), when CAPM holds, the equilibrium expected returns πt
satisfy the following equation:

πt = δΣtw
ref
t , (1)

where δ is the risk-aversion coefficient and wref
t is the reference portfolio weights. Let Vt be the K̄×1 vector

summarizing K̄ (absolute or relative) views at time t, the posterior expected returns µBL,t can be obtained

by combining the equilibrium expected returns, πt, with investors’ views using a Bayesian technique, i.e.,

µBL,t = [(τΣt)
−1 + P ′tΩ

−1
t Pt]

−1[(τΣt)
−1πt + P ′tΩ

−1
t V t], (2)

where Pt is a binary matrix (a matrix in which all the elements are either 0 or 1) identifying the number

of assets associated with the views at time t. Ωt is a non-negative diagonal matrix measuring investors’

degree of confidence in their views which, Ωt = 1
δPtΣtP

−1
t , and tau is a scalar parameter representing

the reliability of the equilibrium expected returns, i.e., how close πt is anticipated to fall relative to the

true expected returns. We follow Bessler et al. (2017) and start with τ equal to 0.025 1. The posterior

1Bessler et al. (2017) show that Black–Litterman results are robust for the commonly used values for tau between 0.025 and
1.00. We report results for a reliability measure of 0.1625 for robustness checks, which corresponds to the mean of the range of
values used by previous studies (see, Black and Litterman (1992), He and Litterman (2002), Idzorek (2007)).
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conditional covariance matrix is then given by:

ΣBL
t = Σt + [(τΣt)

−1 + P ′tΩ
−1
t Pt]

−1 (3)

Let w be the weights of a portfolio of the N risky assets. An investor who seeks to maximize the utility

function will choose the portfolio allocations w by:

Max U ≡ µ>BL,tw −
δ

2
w>ΣBL

t w, s.t.
N∑
i=1

wi = 1, (4)

where µBL,t and ΣBL
t are respectively the posterior expected returns and covariance matrix. The budget

constraint
∑N

i=1wi = 1 indicates that investors need to have 100% of the wealth invested in the risky assets.

2.2 Subjective returns modelling

This section details our approach for modelling investors’ views. We begin with the theoretical founda-

tions and intuition of Dempster-Shafer (henceforth, DS) Theory of Evidence, Then, we proceed to present

the numerical methods of the decision-fusion approach.

The expression of investor’s views can be interpreted as a decision-making process. As Evangelou et al.

(2005) claimed, knowledge of the current situation is a prerequisite for any prospective decision whereby

good decisions should be accomplished by a shared understanding of various knowledge domains. Silva et al.

(2017) also indicate that the knowledge acquired from analyzing the objects from various perspectives could

well enhance the confidence with which decisions are taken. Motivated by these earlier studies, we link BLM

to a decision-making scenario and collect knowledge from multiple classifiers. In particular, we consider a

process of fusion of classifier decisions which estimates a belief that next period’s market condition belongs

to a particular class {bullish, bearish, very bullish, very bearish}.
The classifier-combination framework presented in Al-Ani and Deriche (2002) uses a a cost function

to minimize the mean square error between the predictions and the target classification outputs. We follow

this line of work and develop a refined model within BLM. First, we perform feature engineering to select

a set of features that are potentially useful for predicting the future performance of the stock market. This

includes a set of macroeconomic indicators, financial indicators, and time-series of past returns, which have

been tested and confirmed in recent literature (see, Flannery and Protopapadakis (2002), Welch and Goyal

(2008), Rapach et al. (2010), and Gu et al. (2020)). Second, we apply feature-subsampling and apply each

individual classifier to each set of sub-features. We combine decisions of such sub-feature classifiers while

each of them makes a decision based on its sub-feature. The idea behind this approach is to enhance the

diversity between classifiers and to improve the generalization of the outcome with a better bias-variance

trade-off 2. According to Large et al. (2019), for a multi-classifier combination to be strong and be able to

provide a good way of achieving the near-optimal performance, it needs to contain classifiers that are good

for making decisions in areas of their expertise but do not unduly overlap. By training each classifier on

the sub-features, each classifier can access different sources of information in the data and allow investors to

exploit the complementary knowledge provided by various classifiers. In Al-Ani and Deriche (2002), evidence

from each classifier was collected from the same source of information and the contribution of each classifier

is not disentangled. Our paper suggests using a weighting-scheme, which we perform an assessment for all

features based on Shannon’s entropy and summarize the wealth of information provided by each feature

subset into one single index, the information volume (IV). The index identifies the amount of information

available to each classifier, and is a key input in our model for constructing the evidence. Finally, we replace

the gradient descent method used by Al-Ani and Deriche (2002) with the Adaptive Moment Estimation to

2Brown et al. (2005) argue that it is possible to reformulate any classification problem as a regression one by choosing to
approximate the class posterior probabilities and show that mean squared error of an ensemble estimator depends critically on
the amount of error correlated between individual classifiers.
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optimize parameters in the system.

2.2.1 Dempster-Shafer Theory of Evidence

Originally proposed by Dempster (1968) and completed by Shafer (1976), the Dempster-Shafer Theory

of Evidence has remained active for modelling and processing information uncertainty after years of inves-

tigation. Practical applications involves pattern recognition, transportation solution, and network system.

In this section, we present the fundamentals of this framework.

Let Θ be the set of mutually exclusive set of atomic hypotheses, Θ = {θ1, θ2, ..., θK}, Θ is named the

frame of discernment with a corresponding power set 2Θ, and ∅ denotes the empty set:

2Θ = {∅, {θ1}, {θ2}, ..., {θK}, {θ1, θ2}, ...{θ1, θ2, θ3}, ...,Θ}. (5)

The basic belief assignment (BBA) is a function denoted by m, which distributes a belief value in [0, 1]

to every subset of Θ: i.e., m : 2Θ → [0, 1], and satisfies the following:∑
G⊆2Θ

m(G) = 1 and m(∅) = 0, (6)

where the value of m(G) represents the degree of belief (evidence) assigned to the composite hypothesis G.

The degree of belief will reflect some ignorance due to inability to further subdivide the measure of support

into finer subsets. Every subset G for which m(G) > 0 (i.e., a non-empty subset) is called a focal element.

For a composite hypothesis Z (where G ∈ Z), the belief function Bel which is derived from the BBA, can

be used to characterize the measure of support to Z: Bel(Z) =
∑

G∈Zm(G). Consider a more general case

where there are two independent BBA, m1(G), m2(Z), representing independent arguments of the evidence

supporting G and Z, Dempster’s combination rule allows one to aggregate the independent BBA into one

unified function:

m(M) =

∑
G∩Zm1(G) ·m2(Z)

1− χ
, χ =

∑
G∩Z=∅

m1(G) ·m2(Z), (7)

where χ measures the degree of conflict between m1(G) and m2(Z), and the denominator acts as a nor-

malizing factor that attributes the BBA associated with the conflict to the empty set. To select the most

reasonable hypothesis for a given problem, we need to transform the beliefs into pignistic probabilities (the

probability that a rational person will assign to an option when make decisions) using the pignistic prob-

ability function (BetP ):BetP (m(M)) =
∑

Me∈M
m(M)
|Me| , where |m(M)e| refers to the cardinality (number of

cardinal members) of |Me|. Then, the subset with the highest pignistic probability is considered to be the

predicted outcome.

2.2.2 System Model

Next, we explain the numerical work for implementing the decision fusion approach. This is an exten-

sion of Al-Ani and Deriche (2002) and can be summarized into the following steps, that we shall explain in

detail in what follows:

I. For asset i in the asset menu, transform the return rit into label lit, and collect a number Q number of

feature sets X1,X2, ...,XQ.

II. Fit a single classifier cq to each training set Dq∈Q, produce the class probabilities yq for K possible class

labels, i.e., yq = [yq1, y
q
2..., y

q
K ], yqk is the class probability that cq classifies the output to label k.

III. Calculate the Shanon’s entropy of feature set Xq and derive the entropy-based weight ewq.

IV. For a hypothesis set Θ = {θ1, θ2, ..., θK}, Θ, denote θk a focal element, calculate the belief in class

label k assigned by classifier cq (i.e., mq(θk), based on: (1) ewq; (2) the unnormalized ignorance gq; (3) the

Euclidean distance between the reference value λqk and the class probability yqk.

V. Combine the belief in label k from all classifiers using Dempster’s combination rule.
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VI. Optimize λqk and gq using Adapt Moment Estimation by minimizing the classification error between the

target output (one-hot-encoding of the true label) and the fused classification results.

VII. Choose the label with the maximum pignistic probability.

VIII. Based on results from step VII, the risk aversion level, and the covariance matrix, set entries of the view

Figure 1: Flow chart of entropy-based D-S Evidence Theory

Step I.

We assume that investors bear the hypothesis set {bullish, bearish, very bullish, very bearish}. The

candidate labels set are initialized based on: (i) r̄it,t−ρ, which is the ρ-month moving average of returns (we

consider ρ = 120 in this study);, (ii)zit, which is given by z =
rit−r̄it,t−ρ
σit,t−ρ

, here σit,t−ρ represents the ρ-month

moving standard deviation. As pointed out by Tarekegn et al. (2021), an inherent characteristic of many

multi-label data is the class imbalance problem, the samples and their corresponding labels could be non-

uniformly distributed over the data space (e.g., too many samples are labelled as “bearish”, and very little

samples being labelled as “very bullish”). To avoid the class probabilities being extremely low, we establish

the threshold similar to Charte et al. (2019), where li,t ∈ {2, 1,−2,−2} represents “very bullish”, “bullish”,

“bearish”, “very bearish” market conditions, respectively:

li,t =



2 if rit ≥ r̄it,t−f̂ and zit ≥ 1

1 if rit ≥ r̄it,t−f̂ and 0 < zit < 1

−1 if rit < r̄i
t,t−f̂ and −1 < zit < 0

−2 if rit < r̄i
t,t−f̂ and zit ≤ −1.

(8)

At this point, consider an original feature set X with Ψ number of features and T observations. We

partition the feature set X into Q overlapping feature sets: X1,X2, ...,XQ. Suppose the feature set XQ

contains Ψ̄ features (Ψ̄ < Ψ): we concatenate Xq (a T × Ψ̄ matrix) with the labels l (a T × 1 vector) to

form a dataset Dq, for each asset i.

Step II.

Let Θ = {θ1, θ2, ..., θK} be the frame of discernment where θk represents the class label k. The dataset

Dq obtained in Step I is used to train a classifier cq and produce a vector of class probabilities yq for for

the samples in Xq, i.e., yq = [yq1, y
q
2, ..., y

q
K ], where yqk is the probability that cq believes Xq should belong

to class label k

9



Then, we will be looking at the basic belief assignments (BBA) that summarizes the relative likelihood

of each hypothesis. One of the most widely used measures for obtaining the belief mass is the distance-based

measure, which was first introduced by Mandler and Schümann (1988). In their paper, the authors calculate

the Euclidean distance between the learning datasets and the reference points to estimate the statistical

distributions of intraclass and interclass distances. The major advantage of using distance measures is that

they can be easily normalized by using some proper aggregation techniques. An extension would be to use

the Hamming or the Minkowski distance.

In our application, we denote as λqk the reference value assigned by classifier cq to the label k. We use

the Euclidean distance between λqk and the classifier’s probabilistic output yqk, to compute the belief mass

mq(θk). This represents the degree of belief in class label k given by classifier cq. For the case in which cq

cannot provide any discriminant information about the class to which the feature vector x should belong

to, we follow Al-Ani and Deriche (2002) and represent this lack of knowledge by using the unnormalized

ignorance measure gq.

Step III.

As explained earlier, we aim to enhance the diversity between the base models by applying feature

sub-sampling, and one question arises automatically: when attributes/features of various alternatives are

available to the participants, can we assume the decision made by each individual should be viewed as

equal? A series of studies in Multiple-Attribute Group Decision-making (MAGDM) have shown that we

cannot explicitly assume all attributes have equal weights when a group decision-makers receive attributes

of different alternatives (Lotfi and Fallahnejad (2010)). This is because there might coexist attributes of

a different (cost/benefit) and even a conflicting nature (He et al. (2016)). As Munda (1996) explains, one

would need to consider the possibility of offsetting a cost on x1 by a sufficiently large benefit on another

attribute x2. Aa a simple illustration, consider a classifier c1 trained with the attribute set [x1,x2] and

another classifier c2, trained with a different attribute set [x1,x3]. If x3 contains a sufficiently higher

volume of information than x2, then, the evidence provided by classifier c2 tends to be more valuable than

the evidence provided by classifier c1. Motivated by this argument, we implement an assessment framework

for all attributes and develop an entropy-based weight drawn from the information entropy given by each

attribute set.

Information entropy refers to a general measure of uncertainty, introduced by Shannon (1948). The

concept of entropy represents the steppingstone of information theory, and has been employed in miscel-

laneous scientific fields such as transportation systems, expert systems, and physics. Nowadays, it has

also been applied empirical work studying the dynamics of stock and foreign exchange markets (Oh et al.

(2007), Pele et al. (2017)). According to Shannon, the number or quality of the information available in a

decision-making setting is one of the key determinants of accuracy and reliability of decisions. In this sense,

Shannon’s Entropy can provide a natural measure of the quantity of the useful information provided by

data when assessing a framework under alternative scenarios.

Given a feature set X with two sets of vectors: feature descriptions Xq(.t) = {xtj, j = 1, 2, . . . , Ψ̃}
and observation description X(j.) = {xtj, t = 1, 2, . . . , T̃}, where ˜Psi represents the number of features and

T̃ represents the number of observations for the training sample, the dissimilarity between each feature can

be obtained by Shannon’s entropy Hj , defined as:

Hp = − 1

T̃

T̃∑
1

PrtjlogePrtj . (9)

A higher value of Hj implies stronger relevance of feature j to the classification task. For feature set

X which contains xtj as the tth observation under the jth feature, we define Prij =
x̃tj∑T̃
t=1 x̃tj

as the attribute

value of the jth feature, where x̃tj represents the standardized version of xtj and 0 ≤ Prtj ≤ 1. We define

information volume (Iv) as the rescaled exponential of Hj so as to amplify the difference of contrast between
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features. Then, the Iv of the jth feature can be computed as:

Iv(j) = e
−

∑T̃
i=1 Prtjloge(Prtj)

logeT̃ . (10)

At this point, we are free to develop an entropy-based weighting system, ewq =
∑Ψ̄
j=1 Iv(j)∑Ψ
j=1 Iv(j)

to be used

in the combination system. The larger the entropy-based weight, the greater discriminant power of that

attribute vector in the decision-making process, therefore the highest belief should be given to a given

decision-maker (classifier).

Step IV.

The entropy-based weight ewq developed in step III can be readily combined with the Euclidean

distance dq(θk) and the unnormalized ignorance gq to form the basic belief assignment (BBA). This is the

belief in class label k assigned by classifier cq, i.e., mq(θk), For cq, we denote the belief committed neither

to k nor to the complement of k as mq(Θ). The BBA assigned by classifier cq is defined as:
dq(θk) = ||λqk − y

q
k||

mq(θk) =
dq(θk)ewq∑K
k=1 dq(θk)+gq

mq(Θ) =
gqewq∑K

k=1 dq(θk)+gq

(11)

Step V.

The belief in class label k constructed in step IV can be jointly combined from all classifiers according

to Dempster’s combination rule, assuming I = 1, 2, ..., Q\{q},mI = ⊕i∈Imi:

ẑ(k) = m(θk) = (⊕q∈{1,2,...,Q}mq)(θk) =
[mI(θk)mq(θk) +mI(Θ)mq(θk) +mI(θk)mq(Θ)]

1−
∑

p̄

∑
s̄,s̄ 6=p̄mI(θp)mq(θs)

(12)

ẑ(M + 1) = m(Θ) = ⊕q∈{1,2,...,Q}mq(Θ) =
mI(Θ)mq(Θ)

1−
∑

p̄

∑
s̄,s̄ 6=p̄mI(θp)mq(θs)

(13)

We obtain binary value c = [c1, c2, ..., cK ] by applying one-hot-encoding on the true, observed label l.

These represent the target classification output. For example, ck = 1 if the attribute vector x truly falls into

class label k, and ck = 0 otherwise. Our objective is to minimize the mean square error (MSEr) between

the combination output ẑ(k)) and target output c(k): MSEr ≡ ||ẑ(k) − c(k)||2. Given eq. (16), we are

interested in minimizing the MSEr w.r.t its parameters λqk and gq, i.e., ∂MSEr
∂λqk

and ∂MSEr
∂gq , which can be

derived in closed form as:

∂MSEr

∂λqk
=

K+1∑
i=1

[
∂Er

∂ẑ(i)
(

K+1∑
j=1

∂ẑ(i)

∂mq(θk)

∂mq(θk)

∂λqk
+

∂ẑ(i)

∂mq(Θ)

∂mq(Θ)

∂λqk
)]. (14)

∂MSEr

∂gq
=

K+1∑
i=1

[
∂Er

∂ẑ(i)
(
K+1∑
j=1

∂ẑ(i)

∂mq(θk)

∂mq(θk)

∂gq
+

∂ẑ(i)

∂mq(Θ)

∂mq(Θ)

∂gq
)]. (15)

Step VI.

To minimize the value of eq.(14) and eq.(15), we initialize the reference value λqk and the unnormalized

ignorance gq, then fine-tune them using the Adaptive Moment Estimation (ADAM) algorithm of Kingma

and Ba (2014). ADAM is a first-order gradient-based optimizer of stochastic objective functions, it deals

specifically with large datasets and/or high dimensional parameter space and has proved itself an efficient

algorithm in many numerical examples. Kingma and Ba (2014), for example, shows by using three popular

machine learning models: Logistic Regression, Multilayer Perceptron, and Convolutional Neural Network
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(CNN), ADAM can achieve higher convergence rate than alternative optimizers. Mehta et al. (2019) also

show that for CNN-based traffic sign classification tasks, ADAM can obtain considerably higher testing

accuracy than stochastic gradient descent.

Let Ĉt be the partial derivative of MSEr with respect to λqk evaluated at the timestep t. The theoretical

basis of ADAM is to update the parameter using the exponential moving averages of the gradient and the

squared gradient. It realizes the benefits of two popular optimization algorithms: Adagrad and RMSprop.

Similar to Adagrad, ADAM adapts the learning rate to different parameters of the estimator, such that

parameters associated with more frequently occurring features can be updated at a small learning rate (and

vice versa), hence, it is well-suited to deal with sparse features and gradients. On the other hand, ADAM

adapts the learning rate based on the average of recent magnitudes of the gradients, which works very well

for non-stationary setting (when the optimal function to be learned changes over time), similar to RMSprop.

Let ut and vt be the first and second moment estimates of the gradient Ĉt. We start with u0 = 0 and

v0 = 0 and update ut and vt using hyperparameters b1, b2 ∈ [0, 1) as follows:

ut = b1ut−1 + (1− b1)Ĉt, vt = b2vt−1 + (1− b2)Ĉ2
t , (16)

where b1, b2 are the exponential decay rates for the moment estimates for gradient Ĉt. However, if the mov-

ing averages are initialized as vectors of zeroes, then the moment estimates will bias towards zero, especially

during initial time steps or when the decaying rates are small. Therefore, it is necessary to counteract the

initialization bias with the bias-corrected first and second moment estimates: ût = ut− ut
1−bt1

, v̂t = vt− vt
1−bt2

.

In In this way, we obtain ADAM’s updating rule for this way, we obtain ADAM’s updating rule for λqk,t,

where a is the learning rate that controls the step size of the descent of gradients: λqk,t = λqk,t−1−a
ût√

v̂t+1e−4 .

The above procedures can be repeated for gq to generate an optimal estimate.

Algorithm 1 Meta Algorithm for Entropy-based Decision Fusion

1: Initialization
2: Require: λqk,0, gq0: Initialized reference value and unnormalized ignorance
3: Require: c(k): One-hot-encoding based on the label l
4: Require: a ∈ [0, 1): Learning rates for λqk
5: Require:

¯
1,

¯
2 ∈ [0, 1): Exponential decay rates for λqk

6: for i ∈ N do
7: Fit classifier cq to dataset Dq and produce class probabilities y q.

8: Iv(j) = e
−

∑T̃
i=1 Prtjloge(Prtj)

logeT̃ , j ∈ [1 : Ψ̃] (Compute information volume for the jth feature)
9: Compute mq(θk), mq(Θ), ẑ(k), MSEr(λqk, g

q).
10: m0 ← 0, v0 ← 0
11: m0, v0 ← 0
12: t← 0
13: while λqk,t and gqk,t not converged do
14: t← t+ 1

15: Ĉt ←
∂MSErt
∂λqk,t−1

16: ut ← b1ut−1 + (1− b1)Ĉt
17: vt ← b2vt−1 + (1− b2)Ĉ2

t

18: ût ← ut −
ut

1− bt1
, v̂t ← vt −

vt
1− bt2

19: λqk,t ← λqk,t−1 − a
ût

v̂
1/2
t +1e−4

20: Repeat Step 14-19 for gq

21: end while
22: end for
23: Output ewq, λqk, g

q
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Step VII.

Next, we use the λqk,t and gqk,t obtained in step VI to compute the belief function mq(θk) for our test

set. The forecast of the fused label is simply the label with maximum pignistic probability (BetP).

Step VIII.

Finally, we will transform the fusion results obtained in step VII into vectors of investors’ views. Let

Vt denote the vector of investor’s views. We set the entries in Vt based on the selected label etaand of

the covariance matrix (computed using the methodology described in section 2.3), following Donthireddy

(2018): Vt = Ptπt+(ηPtHtP
>
t ), where Pt is a binary matrix identifying the number of securities associated

with the view at time t, St is the time-varying conditional covariance matrix (which will be explained in

section 2.4), and pit is the equilibrium expected returns that follows from eq(1). η ∈ −2,−1, 1, 2 can be

taken as “very Bearish”, “bearish”, “bullish”, “very Bullish” views, respectively, and indicates the chosen

label with the maximum pignistic probability. We present in Algorithm 1 the meta-algorithm that could be

used to obtain the outputs of this procedure.

2.2.3 Base model for Subjective return prediction

The base models are the individual classifiers that produce class probabilities yq for our system model.

We classify the base classifiers considered in this study into three broad categories: tree-based techniques,

statistical techniques, and support vector machines3. In this section, we will introduce the intuition of each

technique and briefly explain their functioning.

Tree-based models are popular techniques for modern machine learning practice that utilizes a decision

tree structure. At the roof node, a decision tree (DT) chooses the feature with the most information gain and

computes the values for this feature that splits the best. For each branch of the tree created, available data

from prior splits are further partitioned by computing the information gain with respect to the remaining

features. The algorithm refines the classification results recursively until some stopping rules are applied.

Because shallow trees are easily described and visualized, DT attains good interpretability, which makes it

particularly useful in the field of healthcare and finance where intuition and explanation of their predictions

are societally important (see Ludwig and Baracaldo (2022)). Recently, Blanquero Bravo et al. (2019) propose

a sparse optimal tree approach that fewer predictor variables can be used while preserving the classification

accuracy.

Advanced tree-based techniques have also been explored. The gradient boosted decision tree (GBDT)

of Friedman (2001) is an algorithm that favours choosing inaccurately labelled instances for learning and

iteratively corrects the resulting error. It is, in general, ideal for reducing the bias without unduly affecting

the variance in a classification task. In particular, a Random Forest (RF, see Breiman (2001)) is a combina-

tion of de-correlated DTs in which each DT contributes with a single vote to assign the most frequent class

of the input vector. RF improves the diversity of the trees by making them grow from different training

data subsets created through bootstrap aggregating (bagging), a technique used for training data creation

that performs random resampling of the original dataset with replacement. Hence, some data may be used

more than once in the training of classifiers while others may never be used. Therefore, greater classifier

stability is achieved since RF is robust when facing variations in the input data and is not sensitive to noise

or overtraining. Moreover, tree-based methods makes no assumptions on the relationship between features,

which makes it well-suited when data have multi-collinearity among variables.

3Perception-based techniques (Artificial Neural Networks) are also powerful tools to analyze the data. However, their
performance is unstable since the design of network architecture is not uniform and the parameter estimation uncertainty is
non-trivial. The major criticism of neural networks is overfitting - as the model becomes more complex, it will tend to fit noise
in the data rather than finding the signals. With limited data in practice, convoluted interactions among the predictors will only
add complexity to the model without adding any corresponding benefits (Hawkins (2004)). This is particularly problematic
for asset allocations due to the comparative dearth of data and the low signal-to-noise ratio (Gu et al. (2020)). Therefore, we
exclude neural networks from this study.
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The statistical algorithms used in this study are the k-Nearest Neighbour (kNN) and Logistic regression

(LR). The KNN algorithm of Fix and Hodges (1989) is based on predicting the class of the sample by using

class of its neighbours. First, it calculates the distance between unlabelled sample and each training sample

using principal component analysis. Next, by selecting k number of training sample which are closest to the

unlabelled sample (refer as k neighbours), it assigns class to the unlabelled sample using the class which owns

the majority among the k neighbours. In fact, KNN does not need to train model for generalization, but

memorizes the training dataset, and is therefore known as a “lazy learner”. The key advantages of kNN are

that the algorithm makes no explicit assumption about the distribution of the data, is insensitive to outliers

and is free of redundant information and/or missing values, which makes it powerful tool to analyze data.

LR is an efficient statistical algorithm based on estimating the probability of being in one binary outcome

versus the other. The model iteratively finds the best linear combination of the explanatory variables with

the greatest probability of detecting the observed outcome, using components of linear regression reflected in

the logit scale (Stoltzfus (2011)). LR is a very powerful tool, however, it requires strong assumptions on the

independence between residuals and the variables; and independence among features (no multi-collinearity).

The Support Vector Machine (SVM) of Hastie et al. (2009) is based on the goal of finding an optimal

separating hyperplane on the feature set, which the hyperplane is as far as possible from the closest members

of both classes. The closest members of both classes are referred as support vectors and the distance between

the hyperplane and the support vectors is referred as the margin. The classification result for linear SVM

is in general, a linear combination of all the data points that lie on the margin. When the feature set must

be mapped to a high-dimensional space before they can be divided linearly to separate the classes, the

classification result is a combination of all data points that lie on the margin using a kernel function. Thus,

SVM is compatible for handling high dimensional data.

2.3 Reference Portfolio

The theoretical basis of BLM is Bayesian learning. The market portfolio acts as a point of reference,

as more data gradually become available, existing beliefs about expected returns are revised into posterior

beliefs to account for the new information. However, the CAPM anomalies reported in the asset pricing

literature suggest that holding a reference portfolio proportional to the market capitalization may be grossly

inadequate. Furthermore, Zhou (2009) indicates that the nature of the assumed data-generating process

are essential in Bayesian learning, which BLM completely disregards. If the equilibrium expected returns

calibrated using the degree of risk aversion, covariance matrix, and market capitalization weights, were to

be substantially different from the historical returns, investors could easily under- or overestimate the true

expected returns; thus, leads to large estimation errors for implementing the optimization framework. On

the other hand, the information inherited from data provides understanding of the general economy (macro

fluctuation, regime changes), rendering historical data important for constructing the investors’ prior.

For these reasons, we obtain two priors directly from the data: the equally-weighted (1/N), and the

no-short-sell minimum variance portfolio, applying ten-year expanding data windows of asset returns. Both

strategies have been intensively tested in the portfolio selection literature and are usually more competitive

in out-of-sample validations than strategies relying on the expected return estimates, since expected return

estimates are more sensitive to estimation errors compared to volatility estimates (Bianchi and Guidolin

(2014); Fugazza et al. (2015)).

Given the time series of monthly excess returns, we generate reward-to-risk measures for strategy γ,

which is defined as the in-sample mean divide by the variances estimates:

Rγ =
Meanγ

Stdγ
=

µ̂IS,>γ ŵγ

ŵ>γ Σ̂IS
γ ŵγ

, (17)

where Σ̂IS
γ represents the in-sample covariance estimates for strategy γ. For 1/N strategy which does not

require a covariance matrix, we use estimates of the in-sample standard deviation. Let M be the length of
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the estimation period, based on the expanding window approach, the time series of Rγ is a (T −M) × 1

column vector, where Rγt is the in-sample reward-to-risk of strategy γ at period t.

Next, we develop a data-generating process that obtains regression forecasts for future reward-to-risk

under each prior, based on a quantitative forecasting model, selected to be the least absolute shrinkage and

selection operator (LASSO, see Tibshirani (1996))4. Let Φ be the non-negative penalty parameter. The

regression forecast R̂γt at period t can be obtained by minimizing the loss function:

L(β; Φ) =
1

M

M+ϑ∑
t=ϑ+1

Rγt − (β̂0 + x̃tβ̂) + Φ
ϑ∑
t=1

|β̂t|, (18)

where β̂t represent the regression coefficients, ϑ denotes the number of lags (ϑ is selected to be 120 in

this study, which is equivalent to include information of ten year), β̂ = [β̂t−1, β̂t−2, ..., β̂t−ϑ], and x̃t =

[Rγt−1, R
γ
t−2, ..., R

γ
t−ϑ]. Thus, the reward-to-risk predicted in period t is: R̂γϑ+1 = β̂0 +

∑ϑ
t=1 β̂tR

γ
t . We split

the training and the testing sample such that we generate forecasts for five trading years (from December

2016 to December 2020). Then, predictions for R̂γ and the corresponding weight matrix wγ can be stored

in a 120× 1 column vector and a 120×N matrix, respectively.

Based on the regression forecasts of future reward-to-risk ratios, we can combine the two priors into

a new Bayesian prior. The resulting reference portfolio, which is taken as a shrinkage of the 1/N and

the minimum-variance portfolio, can moderate parameter estimation uncertainty and provide a reasonable

starting point for return estimation. The approach is also very flexible, one can select any shrinkage target

and construct the combination without deriving analytical solutions.

Following eq.(18), we can generate a list of two candidate portfolios which, their predicted risk-to-

reward ratios can be stored in a 120× 2 matrix. At period t, we have a 1× 2 vector of: R̂t = [R̂
1/N
t , R̂MV

t ].

The probability of each prior is obtained by normalizing their risk-to-reward ratios. Let R̂sumt = R̂
1/N
t +R̂MV

t ,

the reference portfolio weights can hence be set as: wref
t =

R̂
1/N
t

R̂sumt

w
1/N
t +

R̂MV
t

R̂sumt

wMV
t , where w

1/N
t and wMV

t

are the weight compositions of the 1/N and minimum-variance portfolios,
R̂

1/N
t

R̂sum
t

and
R̂MV
t

R̂sum
t

are the probability

of the two priors, respectively. The approach is very general that can be applied to various situations, one

can generate the framework to incorporate more than two candidate portfolios.

2.4 Wishart Stochastic Volatility with Graphical Lasso (GWSV)

The prior covariance matrix Σt is required at two stages of the Black-Litterman model, first, to reverse

engineer the equilibrium expected returns πt from the reference portfolio; second, to obtain the posterior

covariance matrix ΣBL
t . The aforementioned paper, Harris et al. (2017), has relaxed the constant conditional

volatility assumption by using multivariate GARCH models. In this study, we generalize their research to

incorporate stochastic variations in the covariance matrices. We model the unobserved dynamic precision

matrices as a latent Wishart process (see, Uhlig (1994) and Uhlig (1997)) and further shrink the one-step

ahead prediction of conditional volatility using Graphical LASSO to bound the estimation error, while the

shrinkage is proportional to the diversification distribution among the risky assets. Parameters in the newly

obtained GLASSO-Wishart model are calibrated using the Genetic Algorithm (GA). The prior distribution

for precision matrix is conjugate to the Gaussian distribution, so the likelihood function can be derived in

closed form. In the following, we provide the relevant details.

Consider a N-dimensional return vector r t with mean µt and conditional covariance matrix Ht. WSV

4LASSO (a penalized regression technique) shrinks the large coefficients towards zero by applying L1 norm regularization
on the slope coefficients. It introduces bias in the coefficient estimates but reduces their variance, therefore mitigating the
risk of overfitting and potentially improving the out-of-sample performance owing to a better realized bias-variance trade-off.
This approach is also attractive because it simultaneously performs variable selection and allows a researcher to identify the
pertinent and remove irrelevant predictors. In recent times, LASSO has received intensive scrutiny, especially when applied to
stock return predictability, see, e.g., Chinco et al. (2019), Gu et al. (2020), and Lee et al. (2022).

15



defines a multiplicative law of motion for the stochastic inverse covariance matrix H−1
t (Moura et al. (2020)):

H−1
t =

κ+ 1

κ
U(H−1

t−1)′ψtU(H−1
t−1), ψt ∼BN (

κ

2
,
1

2
), (19)

where κ is the degree of freedom, BN represents a N -dimensional singular Dirichlet distribution, ψt contains

random shocks drawn from BN and U(H−1
t ) is the upper triangular matrix from the Cholesky decompo-

sition of H−1
t . Suppose H−1

t is initialized on a prior that follows a Wishart distribution: H−1
t−1|r t ∼

W N (κ, [κS t−1]−1) and E(H−1
t ) = S−1

t−1, the one-step-ahead prediction for covariance is: S t = 1
κ+1r tr

′
t +

κ
κ+1S t−1. The smoothing formula can be reformed as follows, where ξ = κ

κ+1 is the degree of time variation:

S t = ξtS0 + (1− ξ)
t−1∑
i=1

ξi−1r t−ir
′
t−i. (20)

The parameter ξ can be characterized as a discounting factor given that ξ = κ
κ+1 and κ > N + 1, so

the smoothing formula in (20) implies a shrinkage between the initial covariance S0 and the Exponentially

Weighted Moving Average (EWMA) covariance, where ξ governs both the smoothing and the shrinkage

intensity. To estimate ξ, we follow Kim (2014) and apply a maximum likelihood approach, conditional on

S0, hence, the choice of S0 is of crucial importance.

Choosing an intuitive initial covariance matrix may be challenging. A standard choice would be to

adopt the sample covariance matrix Σt, but a general concern is that the maximum-likelihood estimator

(MLE) is often poorly behaved with overwhelming random noise. Uhlig (1997) advises to use a diagonal

matrix where the diagonal is given by average squared residuals obtained from an AR(1) regression. Moura

et al. (2020) also suggest using a diagonal matrix in which the main diagonal collects the sample variance

estimates of individual asset returns to remove any noisy correlations. In our generalized BLM, we extend

Friedman et al. (2008) by using the portfolio’s diversification distribution (explained later in this section)

to regularize the conditional correlations between assets.

In the literature on sparse covariance estimation, learning the structure of undirected Gaussian graphs

is equivalent to estimating the inverse covariance matrix when assuming a Gaussian distribution for asset

returns. As shown by Friedman et al. (2008), one can impose an L1 norm of regularization on the negative

log-likelihood to encourage sparsity of the inverse covariance matrix:

MinS−1
0 �0{− log det |S−1

0 |+ tr[ΣS−1
0 ] +

∥∥J ∗ S−1
0

∥∥
1
}, (21)

where Σ is the sample covariance, tr is the trace operator, J = {Ji} is the inverse-volatility based regularizing

parameter for each variable and * denotes pairwise multiplication.
∥∥S−1

0

∥∥
1

is the sum of the absolute values

of S−1
0 . For J > 0, the log-determinant term guarantees the convexity of eq.(21) that a unique global

positive definite minimizer will always exist. The dual of the penalized likelihood problem can be solved by

using a block coordinate descent algorithm. Let F be the estimates of S0, consider a partition of F :(
F 11 f 12

f ′12 f22,

)

where F 11 is a (N−1)×(N−1) matrix that removes the k̂th column and the ĵth row, g12 is a (N−1) vector

produced by removing the diagonal element g22 from the ĵth row, and g22 is a scalar. Σ is partitioned in the

same fashion. The idea of using block coordinate is optimize over one row/column each time, restrict the

remaining elements to be constant and recursively cycling through all rows and columns until convergence.

Banerjee et al. (2008) show that based on sub-gradient notations and dual convexity, the solution to g12 is

equivalent to repeatedly solving the following Lasso problem:

Minα{
1

2

∥∥∥∥F 1
2
11α̂− F

1
2
11Σ12

∥∥∥∥2

+ ‖J ∗ α̂‖1}, (22)
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where α̂ is a (N − 1) solution vector that can be derived using the soft threshold operator:

α̂j ← Soft(Ûĵ −Σk̂ 6=ĵ V̂k̂ĵ , α̂k̂, J)/V̂ĵĵ , (23)

where V̂ = F 11, Û = Σ12, f 12 = F 11α̂, and f22 denotes the variance which remains unchanged during the

process. The estimate of S0 can be solved by updating column/row-wisely with f 12.

To further improve the performance of Graphical LASSO method, we suggest an alternative approach,

the diversification-based GLASSO, which follows Meucci (2009)’s analysis on the entropy of portfolio diver-

sification distribution. The idea underlying our approach is to account for the fact that estimation errors are

not the same for all stocks: the estimation errors are larger for stocks with larger variance (Levy and Levy

(2014)). The diversification-based GLASSO regularizes conditional covariance to be directly proportional

to the diversification measure: the greater the diversification index, the higher the exposure to risk, the

larger the estimation error, and the stronger regularization that will take place.

To implement the approach, we need to determine a diversification measure for each asset in the

portfolio. In this respect, Meucci (2009) argues that the commonly used diversification measures such as

risk-based, factor-based, and weight-based measures (the Herfindal’s index) cannot represent the structure

of portfolio concentration profile in the correlated markets, and can only be applied in specific circumstances

and/or under restrictive hypotheses. Instead, Meucci introduces a new measure, diversification distribution,

to identify the diversification measure offered by each individual asset. In our paper, the strength of the

regularization applied the asset i, or equivalently, the penalty weight (w̃i), is given by the diversification

distribution of uncorrelated principal portfolios, which is then multiplied with the homogenous regularization

parameter J to yield the solution.

In markets characterized by correlated asset returns, the generic portfolio can be represented as a set

of uncorrelated principal portfolios that expose to uncorrelated sources of risk, and the principal component

decomposition of sample covariance matrix Σ can be used to identify the uncorrelated sources of risk

among assets: E′ΣE = Λ where E represents an orthogonal matrix whose columns e1, e2, ..., eN contain N

eigenvectors and Λ is a diagonal matrix whose diagonal entry is given by the corresponding eigenvalues (ϕ1 >

ϕ2 > ... > ϕN ). Each eigenvector represents an uncorrelated principal portfolio, and the corresponding

eigenvalue denotes the corresponding portfolio return variance.

According to Meucci (2009), the original portfolio can then be replicated by combining N uncorrelated

principal portfolios with the weights w̃: w̃ = E−1ŵ. We take the equal weights (1/N) as the reference for

ŵ. Define the variance concentration curve as: υ̃n = w̃2
nϕn, n = 1, ..., N , where υ̃n denotes the amount of

original portfolio variance explained by the nth principal portfolio. Meucci’s diversification distribution can

be computed as p̂n = w̃2
nϕn

V ar(Rw) , that is, the contribution to original portfolio’s variance from nth principal

portfolio, where V ar(Rw) =
∑N

n=1 υ̃n denotes the total portfolio variance. Given
∑N

n=1 p̂n = 1 and 0 ≤
p̂n ≤ 1, the diversification distribution p̂n can be interpreted as a set of probability masses related to each

principal portfolio. The penalty weight w̃i can be set equal to p̂n so the regularization parameter can be

computed as: Ji = Jw̃i. To avoid extreme low w̃i, we set a lower constraint: w̄i ≥ 0+1/N
2 where N represents

the number of assets in the asset menu.

We use the in-sample period (i.e., training period, which contains 70% of our data) to search for the

optimal J and follow this choice throughout the out-of-sample period. The optimal J is found using the

genetic algorithm (GA)5. The general workflow of GA is to randomly initialize the population in the search

space (encoded as chromosomes representations) and produce iterative new generations of possible solutions

by performing crossover and mutations. GA will continuously remove the individual with lowest fitness value

until some stopping rules are applied, then reaches the near-optimal solution. For implementation of the

GBL optimization model, we replace the sample covariance matrix Σt in the Black-Litterman optimization

5The theoretical basis of GA is rule of survival of fitness. Standard parameter values are chosen to implement the Genetic
Algorithm Toolbox in MATLAB (number of individuals=80, maximum number of generations=100, precision of variable=20,
generation gap=0.9, crossover probability=0.7, mutation probability=0.0017).
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framework with the GLASSO-Wishart covariance matrix St as given by eq.(20).

3 Data

We evaluate the realized, out-of-sample performance of our generalized Black-Litterman strategy based

on four Fama-French data sets that are typically used in the empirical asset allocation literature (see e.g.,

DeMiguel et al. (2009), Kapadia (2011), Bianchi and Guidolin (2014), Harris and Mazibas (2022)), all

sampled at monthly frequencies. The first dataset consists of monthly return observations of the Fama

French 17 industry portfolios (Ind17 ): consumer durables, fabricated products, clothes, transportation,

construction, utilities, retail stores, steel works, consumption, oil, chemicals, automobiles, financials, food,

mines, machinery and business equipment, others. We also employ the Fama-French 30 industry portfolios

for the US equity market (Ind30 )6, the Fama-French 25 short-term reversal sorted portfolios (FF25 ) and

the Fama-French 10 size and short-term reversal sorted portfolios (FF10 ). All data span the period August

1960–December 2020. Because returns are expressed in US dollars, the appropriate monthly risk-free rate is

again obtained from the Ken French’s website and corresponds to the 1-month T-bill rate. We summarize

details of the datasets in Table 1.

Table 1: List of datasets

Dataset Source N Period Abbre

#
1 Industry portfolios Ken French’s website 17 1960.8-2020.12 Ind17
2 Size and short-term reversal sorted portfolios Ken French’s website 25 1960.8-2020.12 FF25
3 Industry portfolios Ken French’s website 30 1960.8-2020.12 Ind30
4 Size and short-term reversal sorted portfolios Ken French’s website 10 1960.8-2020.12 FF10

This table summarizes the datasets used in this paper. We report from left to right the number of assets (N) in each
asset menu, the period spanned (Period) and the abbreviation (Abbre) used to refer to the dataset in the paper.

To forecast the investors’ views for each dataset, we consider predictors that have been studied inten-

sively and confirmed in the recent equity research. They were culled from the predictive variables appearing

in Rapach et al. (2010), Dangl and Halling (2012) and Neely et al. (2014), among others. First, we use

the 14 predictive variables constructed following Welch and Goyal (2008): the dividend price ratio (d/p),

dividend yield (d/y), earnings price ratio (e/p), dividend payout ratio (d/e), stock variance (svar), book-to-

market ratio (b/m), net equity expansion (ntis), treasury bills (tbl), long-term return (ltr), long term yield

(lty), term spread (tms), default return spread (dfr), default yield spread (dfy), inflation (infl, which are

lagged 2-month to account for the delay in the CPI releases). We further include three uncertainty measures

of Ludvigson et al. (2021): the financial uncertainty (finunc), real uncertainty (realunc), macroeconomic

uncertainty (macunc); and five macroeconomic variables that influence aggregate stock returns as identified

in Flannery and Protopapadakis (2002): monetary aggregate (generally M1), producer price index (PPI),

employment report (emp), balance of trade (bot), and housing starts (houst)7. The corresponding series are

all obtained from Federal Reserve Economic Data (FRED). Please note that we have included the variable

“inflation”, and in order to avoid multi-collinearity, we exclude the sixth explanatory variable, the consumer

price index (CPI) as identified in Flannery and Protopapadakis (2002). A summary of these explanatory

variables are listed in Table 2.

In our two-classifier combination strategy, each classifier is trained with a subset of the predictors using

the method as described in section 2.1.2. However, as indicated by Boivin and Ng (2006) and Bianchi et al.

6The industries include food, beer, smoke, games, books, consumer goods, clothes, health, chemicals, textiles, construc-
tion, steel work, fabricated products, electrical equipment, automobiles, aircraft/ship/railroad equipment, mines, coal, oil,
communication, services, business equipment, paper, transportation, wholesale, retail, meals, finance, utilities, and other.

7For variable “bot”: from 1960 to 1992 we use the Balance on Merchandise Trade, and from 1992 to 2020 we use the Trade
Balance: Goods and Services, Balance of Payments Basis for Balance of Trade. Both series are obtained from FRED.
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(2021), factor identification is influenced by the amount of information used, therefore, we also expand each

set of predictors with 10-year lagged returns taken from the Fama French data. The series were selected

to represent pure stock-level information. The use of return time series nests many models proposed in the

literature (Cujean and Hasler (2017), Gu et al. (2020)) and allows us to use both macroeconomic factors

and stock-level information in a study of joint predictive ability.

Table 2: List of Macroeconomic and Financial Predictors 
 

  Predictor Description Abbreviation 

#         

1 dividend price ratio Difference between the log of dividends and the log of stock prices d/p 
2 dividend yield Difference between the log of dividends and the log of lagged stock price  d/y 

3 earnings price ratio Difference between the log of earnings and the log of stock price e/p 

4 dividend payout ratio Difference between the log of dividends and the log of earning d/e 
5 stock variance Sum of squared daily returns on the S&P 500 svar 

6 book-to-market ratio Ratio of book value at the end of the previous year divided by the price at the 
end of the current month, for the Dow Jones Industrial Average  

b/m 

7 net equity expansion Ratio of 12-month moving sums of net issues by NYSE listed stocks divided by 
the total end-of-year market capitalization of NYSE stocks ntis 

8 treasury bills 3-month treasury bill: secondary market rate tbl 

9 long-term return Long term yield from Ibbotson's Stocks, Bonds, Bills and Inflation Year ltr 

10 long term yield U.S. yield on long-term United States bonds series lty 
11 term spread Difference between the long-term yield on government bonds and treasury bill tms 

12 default return spread Difference between long-term corporate bond and long-term government bond 
return dfr 

13 default yield spread Difference between BAA and AAA-rated corporate bond yield dfy 

14 inflation  Consumer price index, lagged 2-month to account for the delay in the releases infl 
15 real uncertainty Uncertainty in real activity variables such as output and unemployment realunc 

16 financial uncertainty Uncertainty in financial variables (firm-level income growth series) fiunc 

17 macroeconomic 
uncertainty A measure of macro (economy-wide) uncertainty  macun 

18 monetary aggregate A measure of the most-liquid assets in the U.S. money supply: cash, checking 
accounts, traveller’s checks, demand deposits, and other checkable deposits M1 

19 producer price index  
Average change over time in the selling prices received by domestic producers 
for their output PPI 

20 employment report The unemployment rate announced by FRED emp 
21 balance of trade International trade deficit in goods and services bop 

22 housing starts  
New privately-owned housing units started: total units, from U.S. Census Bureau 
and U.S. Department of Housing and Urban Development houst 

 
This table summarizes the macroeconomic and financial predictors used in this paper. We report from left to right the variable 
name, the description of the variable, and the abbreviation used to refer to the predictor. In the column ‘Description’, dividends 
and earnings refer to the 12-month moving sums of the dividends and earnings paid on the S&P 500 index, respectively. The 
macroeconomic, real, financial uncertainty indices are constructed using a statistical model with a large set of macroeconomic, 
sectoral, and financial data. The uncertainty indices and the methodology for constructing the indices are available from Sydney 
C Ludvigson’s web site. 

 

4 Empirical Results

In this section, we compare the realized performance of the GBL strategy with eleven popular bench-

mark strategies from the portfolio literature. We do so across the four different data sets listed in Table 1.

The comparisons occur using the following performance criteria: the average return (Ret), average standard
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deviation (Std), Sharpe ratio (SR), Sortino ratio (SOR), and return over Value-at-Risk at 99% confidence

level (ROV). The Sortino ratio (Sortino and Price (1994)) is defined as the sample mean of out-of-sample

excess returns divided by their downside deviation. We summarize their computation methods in Table 3.
 

Table 3: List of Performance Metrics 
 

Performance Metric Computation Abbreviation  
Sharpe ratio 

𝑆𝑅# =
�̂� − 𝑟!
𝜎*  

SR 

Sortino ratio 𝑆𝑂𝑅, = "#$%!
&#"

  with �̂�$ = min(�̂�, 0) , 𝜎*$ = 4𝑉𝑎𝑟(�̂�$) SOR 

Return over  
Value-at-Risk 

𝑅𝑂𝑉, = "#$%!
'()#"$%

  

with 𝑉𝑎𝑅*#(𝒘) = 𝜁9*#√𝒘𝑻𝚺𝒘− 𝝁𝑻𝒘, 𝜁9*#=−𝜙#!"(1 − 𝛼&) 

ROV 

with: �̂�=sample mean of asset returns                                                           𝒘=vector of portfolio weights 
         𝜎*=sample standard deviation of asset returns                                       𝝁=vector of return estimates 
         𝑟#=risk-free rate                                                                                    𝚺=estimates of covariance matrix   
         𝜙#(∙)=standard normal distribution function                                         𝛼*=confidence level 

 
This table summarizes the three performance metrics and the formulas used to obtain each performance metric. The last column 
gives the abbreviation used to refer to the metric in the paper. 

 

Table 4: List of Asset Allocation Strategies

# Model Abbreviation

Naive
1 1/N with rebalancing (näıve strategy) 1/N
Classical allocation approach
2 Risk-parity RiskParity
3 Reward-to-risk-timing RRT
4 Mean-variance MeanVar-u
5 Maximum Sharpe ratio MaxSR-u
6 Maximum Sharpe ratio with Ledoit&Wolf shrinkage covariance LW-MSR
Bayesian approach to estimation error
7 Bayes-Stein shrinkage BS-u
8 Black-Litterman BS-u
Generalized Black-Litterman (GBL) approach
9 GBL with optimal combinations of portfolios & sample covariance GBL-OS-u
10 GBL with 1/N & GLASSO-Wishart GBL-NG-u
11 GBL with portfolio combination & GLASSO-Wishart GBL-OG-u
Portfolio with short-sell constraints
12 Mean-variance with short-sale constraints MeanVar-c
13 No-short-sell maximum Sharpe ratio with Ledoit&Wolf shrinkage covariance LW-MSR-c
14 Black-Litterman with short-sale constraints BL-c
15 No-short-sell GBL with portfolio combination & GLASSO-Wishart GBL-OS-c
16 No-short-sell GBL with 1/N & GLASSO-Wishart GBL-NG-c
17 No-short-sell GBL with portfolio combination & GLASSO-Wishart GBL-OG-c

This table lists the various asset allocation strategies investigated in this paper. The last column of this table gives the
abbreviations used to refer to the strategy in the tables where the performance of various strategies is compared. For
the Bayesian and GBL strategies, we assume investors seek to maximize the portfolio Sharpe ratio. For strategies 1-11,
we impose a weight constraint which −0.5 ≤ wi ≤ 1 and

∑N
i=1 wi = 1 in the corresponding optimization problems.

For strategies 12-17, we impose an additional nonnegativity constraint on the portfolio weights in the corresponding
optimization problems.

As for the benchmarks, the first portfolio we will be examining is the one returned by 1/N näıve diversi-

fication, which is a simple strategy that requires neither estimation nor optimization. Next, we compare our

GBL portfolios with a portfolio that completely ignores the information in the expected returns and only

20



relies on the in-sample variance, the risk-parity portfolio. We also consider portfolios that require estima-

tion of both sample mean and volatility estimates, i.e., the mean-variance (MeanVar) portfolio, maximum

Sharpe ratio (MaxSR) portfolio with sample covariance, maximum Sharpe ratio (MaxSR) portfolio with

covariance shrinkage (Ledoit and Wolf (2003)), reward-to-risk timing portfolio of Kirby and Ostdiek (2012),

the Bayes-Stein (BS) shrinkage portfolio of Jorion (1986), and the classic Black-Litterman (BL) portfolios,

constructed using (i) historical average returns as the investors’ views; (ii) a reference portfolio of 1/N; (iii)

sample covariance matrix. For the BL portfolio, we choose 1/N to be our reference portfolio because 1/N has

been shown to outperform a host of optimal portfolio strategies for asset allocation (DeMiguel et al. (2009);

Platanakis et al. (2021)). All portfolios discussed in this section are monthly rebalanced and are computed

assuming a rather prudent, but standard risk aversion of 1. Since transaction cost is a non-trivial aspect

that investors must consider when acquiring the allocations they select, we also evaluate the performance

for all strategies after transaction costs, assuming that of 20 bps (the choice of 20 bps is motivated by Kan

et al. (2021)). The list of benchmark strategies and their optimization framework are provided in Table 4

and Table 5.

To evaluate the suggested generalized Black-Litterman portfolios, we perform an out-of-sample testing

and examine the performance of optimal portfolio strategies, for a period spans from January 2016 to

December 2020. To obtain the views, we conduct a large-scale empirical analysis investigating stocks over

55 years from 1960 to 2015, which leads to 5-year out-of-sample results (a similar training period was used

in Gu et al. (2020) where they investigate stock returns from 1957 to 2016). Motivated by DeMiguel et al.

(2009), we use ten-year data windows of asset returns to estimate the equilibrium expected returns and

the covariance matrix, however, we use an expanding window approach, which is expected to provide more

stable inputs than using a rolling window approach. At period t = 121, we use data in the previous 120

months to estimate the equilibrium expected returns and covariance matrix. These inputs, together with

the views, are used to determine the portfolio weight for the GBL strategy. The process is continued by

maintaining the earliest returns but including the returns for the next period in the dataset, until data

points are exhausted, so that we compute and evaluate the last realized out-of-sample performance with

reference to November 2010: November 2020 to provide a forecast for December 2020.

The decision-fusion process developed in this paper optimally combines the classification results of q

classifiers by DS Theory of Evidence. This is different from general ensemble learning algorithms (e.g., meta

learners) where a linear model (e.g., logistic regression) is used to aggregate the classification predictions of

base models. Intuitively, one should let q be sufficiently large in order to create diversity among classifiers.

However, this would inevitably lead to a concern with computational intractability. According to the

computational complexity theory, decision problems can be categorized into various complexity classes

subject to the amount of computational resource (time and space) that algorithms take to solve, and only

a problem solvable by a polynomial-time algorithm is deemed as tractable. Because we have N risky assets

in the investment universe, as our combination system becomes more complicated, the optimization would

become computationally inefficient, and expected running time would be non-trivial. On the other hand,

the massive number of parameters associated with a large number of base classifiers are easily prone to

estimation errors, due to the comparative dearth of the financial data. This would easily result in an

overfitting and a decreased realized forecasting accuracy.The results reported in Al-Ani and Deriche (2002)

also show that, the forecasting accuracy for a two-classifier combination tend to be higher than combinations

using more than two classifiers. Motivated by this earlier literature, we consider in this study two classifiers-

combination in each dataset (q = 2). Given the advantages of tree-based techniques explained in section

2.1.3, we focus on portfolios using random forest and gradient boosted decision trees as our base classifiers.

We also conduct robustness experiments for alternative choices of base models (please refer to section 5 for

more details regarding robustness checks).
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Table 5: Overview of Benchmark Allocation Strategies 
 

Strategy Optimization function/Weight Required parameters 

Risk Parity 𝑤! =
1/𝜎&!"

∑ (1/𝜎&!")#
!$%

 Variances of asset returns 

Reward-to-risk Timing 𝑤! =
�̂�!/𝜎&!"

∑ (�̂�!/𝜎&!")#
!$%

 
Returns and variances of 

asset returns 

Mean-variance 𝑚𝑎 𝑥𝑈 = 𝝁𝑻𝒘−
𝛿
2𝒘

𝑻𝚺𝒘 
Risk-aversion level, 

covariance matrix and return 
estimates for all assets 

Maximum Sharpe ratio 
(MSR) max𝑆𝑅 = 	

𝝁𝑻𝒘− 𝑟'
√𝒘𝑻𝚺𝒘

 
Covariance matrix and return 

estimates for all assets, risk-
free rate 

MSR with Ledoit Wolf 
shrinkage covariance 

max𝑆𝑅 = 	 𝝁
𝑻𝒘*+"

,𝒘𝑻𝚺#$𝒘
 with: 

�̂� =
𝜋& − 𝜌&
𝛾&

 

𝜍 = max	{0,min	{
�̂�
𝑇 , 1}} 

𝚺./ = 𝜍 ∗ 𝑭L + (1 − 𝜍) ∗ 𝚺 

Covariance matrix, average 
sample correlation, shrinkage 

intensity, risk-free rate  

Black-Litterman 

max𝑆𝑅 = 	0%#
&1*+"

,1&2%#1
 with: 

𝝅 = 	𝛿	𝚺𝒘𝒓𝒆𝒇 
𝝁6. = [(𝜏𝚺)*% +𝑷7𝛀*𝟏P]*%[(𝜏𝚺)*%𝝅+ 𝑷7𝛀*𝟏𝑽], 

𝚺6. = 𝚺 + [(𝜏𝚺)*% +𝑷7𝛀*𝟏𝑷]*% 

Risk-aversion coefficient, 
covariance matrix, return 

estimates for all assets, 
reference portfolio, risk-free 

rate 

Bayes-stein Shrinkage 

max𝑆𝑅 = 	𝝁𝑩𝑺
𝑻𝒘*+"

,𝒘𝑻𝚺%)𝒘
 with: 

𝑔9: =
N+ 2

(N + 2) +MY	𝝁𝒎𝒍 − 𝜇=𝟏[
>𝚺*𝟏Y	𝝁𝒎𝒍 − 𝜇=𝟏[

 

𝝁𝑩𝑺 = (1 −	𝑔9:)	𝝁𝒎𝒍 +	𝑔9:𝜇=𝟏 

			𝜐] =
𝑀 + 2

(	𝝁𝒎𝒍 − 𝜇=𝟏)>𝚺*𝟏(	𝝁𝒎𝒍 − 𝜇=𝟏)
 

𝚺6A = 𝚺_
𝑁 + 𝜐] + 1
𝑁 + 𝜐] a +

𝜐]
𝑁(𝑁 + 𝜐] + 1)	

𝟏𝟏>

𝟏>𝚺*𝟏𝟏 

Risk-free rate, covariance 
matrix, length of estimation 

window, maximum-likelihood 
estimation for returns, global 

mean return  
 

with: 𝑤!=portfolio weight of asset i (𝒘=vector of portfolio weights)                        𝒓𝒇=risk-free rate 
         𝜎&!"=volatility estimate of asset i                                                                        𝑽=vector of investors’ views 
         𝑈=utility function of investor                                                                           𝛿=risk version level 
         𝝁=vector of return estimates                                                                            𝛀=reliability of views 
         𝝅=vector of implied return estimates                                                               𝑔9:=shrinkage factor 
         𝚺=estimates of covariance matrix                                                                     𝐌=length of estimation window 
         𝜏= reliability measure of equilibrium expected returns                                      𝜇== global mean return 
         𝝁𝒎𝒍=vector of maximum-likelihood estimation for returns                              𝜐]=prior precision 
       		𝑷 =unity matrix (in case of an absolute return estimate for each asset              𝒘𝒓𝒆𝒇=reference portfolio weights 
         𝑭L=sample constant correlation matrix (shrinkage target)                                   𝜍=shrinkage intensity 
         𝜋&=constant estimator for the sum of asymptotic variances of the entries of 𝚺 scaled by √𝑇 
         𝜌&=sum of asymptotic covariances of the entries of the shrinkage target with the entries of 𝚺 scaled by √𝑇 
         𝛾&=misspecification of the (population) shrinkage targe 

 
This table summarizes details of the benchmark strategies employed in this paper. We report from left to right the model, its 
optimization functions/methodology for obtaining the optimal portfolio weights, the weight constraint imposed, and the 
parameters required for implementing the optimization framework. For readability, we drop the explicit time index. 

 

4.1 Fama French 17 Industry Portfolio

Table 6 reports the out-of-sample realized performance for Fama French 17 Industry portfolios. Among

the seventeen allocation strategies that we examined, the no-short-position GBL strategy with portfolio

combination and GLASSO-Wishart model (GBL-OG-c) performs the best for risk-reward maximization,
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followed by its variation which allows short-position (GBL-OG-u). The difference in Sharpe ratios vs. the

1/N is statistically significant for both strategies, and results are consistent when transaction costs are in

absence or in presence. The reward-to-risk timing (RRT), maximum Sharpe ratio without short-position

(MSR-c), MSR-c with a shrinkage covariance estimator (LW −MSR − c), and Black-Litterman strategy

BL-u, BL-c) also perform well against alternative benchmark strategies, indicating that these are effective

approaches to manage parameter uncertainty in the mean-variance framework. However, these strategies

are less effective than GBL-OG-u and GBL-OG-c. Comparing to 1/N strategy, no statistically significant

spread in the Sharpe ratio have been documented for MSR-c and LW −MSR − c pre-transaction costs,

for BL-u and BL-c post-transaction costs. In addition, the performance ratios are generally lower for RRT

than for GBL-OG-u and GBL-OG-c.

Table 6: Out-of-sample Performance for dataset 17Ind (2016:1-2020:12)

Ret Std SR SOR ROV Ret Std SR SOR ROV

Pre-Transaction Cost Post-Transaction Cost

Panel A: Classic allocation strategies
Näıve 0.155 0.244 0.59 0.993 0.348 0.154 0.244 0.585 0.984 0.344
Riskparity 0.146 0.282 0.481 0.828 0.265 0.145 0.283 0.476 0.819 0.262
RRT 0.146 0.187 0.724** 1.183 0.467 0.145 0.187 0.719** 1.175 0.463
MeanVar-u 0.092 0.362 0.225 0.332 0.108 0.05 0.364 0.108 0.157 0.049
MaxSR-u 0.066 0.151 0.366 0.53 0.194 0.053 0.151 0.283 0.404 0.143
Lediot MSR-u 0.059 0.156 0.311 0.438 0.159 0.047 0.156 0.23 0.321 0.113

Panel B: Bayesian approach to estimation risk
BS u 0.102 0.175 0.523 0.786 0.3 0.087 0.174 0.441 0.653 0.241
BL u 0.544 0.661 0.807* 1.353 0.536 0.521 0.66 0.773 1.286 0.502

Panel C: Generalized Black-Litterman (GBL) approach
GBL-OS-u 1.167 1.714 0.674* 1.202 0.409 1.066 1.709 0.618 1.086 0.362
GBL-NG-u 0.24 0.443 0.518 0.827 0.29 0.177 0.442 0.375 0.587 0.194
GBL-OG-u 0.393 0.464 0.824** 1.431 0.556 0.374 0.464 0.783** 1.351 0.514

Panel D: Portfolio constraints
MaxSR-c 0.155 0.161 0.894 1.539 0.653 0.149 0.161 0.858 1.471 0.611
Lediot MSR-c 0.155 0.178 0.812 1.409 0.557 0.149 0.178 0.776 1.339 0.519
BL-c 0.551 0.722 0.748** 1.226 0.478 0.531 0.72 0.722* 1.173 0.453
GBL-OS-c 1.504 2.092 0.714** 1.284 0.443 1.244 2.093 0.589 1.011 0.34
GBL-NG-c 0.318 0.478 0.643 1.095 0.386 0.286 0.476 0.579 0.978 0.335
GBL-OG-c 0.372 0.429 0.841** 1.433 0.575 0.355 0.429 0.802** 1.358 0.534

This table reports the annualized out-of-sample portfolio average return (Ret), standard deviation (Std),
Sharpe ratio (SR), Sortino ratio (SOR), and return over Value-at-Risk at 99% confidence level (ROV) for
the benchmark strategies and the GBL strategies for Fama French 17 Industry portfolio (Ind17). We present
the significance level from a test of a zero difference between Sharpe ratio of each strategy vs. the 1/N,
where ***, **, * represent 1%, 5%, and 10% test size levels, respectively. For Sharpe ratio, boldfacing
indicates the best-performing asset allocation strategy when applied to a dataset.

Note that the decision-fusion model can be used to generate two additional strategies: GBL-OS and

GBL-NG, i.e., (i) rules with optimal portfolio combination and sample covariance; (ii) rules with a reference

portfolio of 1/N and GLASSO-Wishart covariance (the sample covariance and a reference portfolio of 1/N

are used as inputs in our baseline BL strategy). We compare the realized performance for GBL-OS and GBL-

NG with GBL-OG. Such comparisons can offer direct insight in the effect of adopting the two strategies.

In panel D, we noted that GBL-OG-c outperforms both GBL-NG-c and GBL-OS-c (same for panel C

when short-positions are allowed), suggesting that adopting portfolio combination together with GLASSO-
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Wishart model for the realized expected returns and covariance estimates can generate a better performing

portfolio than using one of these strategies alone to deal with estimation risk. The finding is also confirmed

in Kan et al. (2021) that portfolios using the optimal combining coefficient with shrinkage estimators usually

generates better performance.

Next, we consider portfolios of the remaining benchmark strategies. Although the optimization-based

strategies (MaxSR-u, LW−MSR−u, BS-u) fail to improve the out-of-sample realized portfolio return, they

usually results in a less volatile portfolio than 1/N with lower standard deviation, which is also consistent

to the finding in Sahamkhadam et al. (2022). MaxSR-u performs the best in terms of minimizing portfolio

variance, followed by LW −MSR− u, where the standard deviations are 38% and 36% lower than that of

the näıve strategy, respectively.

4.2 Fama French 25 Size and Short-term Reversal Sorted Portfolios

Table 7: Out-of-sample Performance for dataset FF25 (2016:1-2020:12)

Ret Std SR SOR ROV Ret Std SR SOR ROV

Pre-Transaction Cost Post-Transaction Cost

Panel A: Classic allocation strategies
Näıve 0.166 0.219 0.71 1.175 0.452 0.165 0.219 0.706 1.167 0.448
Riskparity 0.171 0.232 0.69 1.155 0.433 0.17 0.232 0.686 1.147 0.43
RRT 0.162 0.207 0.731 1.2 0.472 0.161 0.207 0.727 1.193 0.469
MeanVar-u 0.064 0.334 0.161 0.254 0.075 0.016 0.333 0.017 0.027 0.008
MaxSR-u 0.047 0.09 0.403 0.787 0.223 0.032 0.089 0.234 0.442 0.118
Lediot MSR-u 0.034 0.086 0.274 0.492 0.142 0.021 0.086 0.119 0.208 0.057

Panel B: Bayesian approach to estimation risk
BS u 0.081 0.106 0.66 1.379 0.421 0.066 0.105 0.52 1.058 0.305
BL u 0.279 0.353 0.759 1.428 0.493 0.263 0.354 0.713 1.326 0.449

Panel C: Generalized Black-Litterman (GBL) approach
GBL-OS-u 2.041 2.393 0.849** 1.503 0.575 1.81 2.392 0.752 1.316 0.478
GBL-NG-u 0.118 0.158 0.679 1.128 0.429 0.013 0.16 0.016 0.025 0.007
GBL-OG-u 1.067 1.181 0.895** 1.587 0.628 0.995 1.162 0.847** 1.466 0.575

Panel D: Portfolio constraints
MaxSR-c 0.194 0.23 0.796 1.49 0.536 0.19 0.23 0.782 1.456 0.521
Lediot MSR-c 0.189 0.267 0.668 1.066 0.412 0.186 0.267 0.658 1.047 0.403
BL-c 0.387 0.493 0.764 1.293 0.495 0.376 0.492 0.743 1.251 0.475
GBL-OS-c 2.404 2.912 0.822** 1.396 0.546 -0.405 5.923 -0.07 -0.079 -0.029
GBL-NG-c 0.332 0.579 0.555 0.853 0.316 0.293 0.579 0.487 0.736 0.267
GBL-OG-c 0.837 1.128 0.733 1.23 0.461 0.765 1.108 0.681 1.113 0.415

This table reports the annualized out-of-sample portfolio average return (Ret), standard deviation (Std),
Sharpe ratio (SR), Sortino ratio (SOR), and return over Value-at-Risk at 99% confidence level (ROV) for
the benchmark strategies and the GBL strategies for Fama French 25 portfolios sorted by size and short
term reversal (FF25). We present the significance level from a test of a zero difference between Sharpe ratio
of each strategy vs. the 1/N, where ***, **, * represent 1%, 5%, and 10% test size levels, respectively. For
Sharpe ratio, boldfacing indicates the best-performing asset allocation strategy when applied to a dataset.

Table 7 reports the realized performance for Fama French 25 size and short-term reversal sorted

portfolios. For the realized performance reported in panel A and B, we find that the non-optimization

based strategies, i.e., näıve diversification, risk-parity and the reward-to-risk timing (RRT), outperform those

optimization-based strategies (MeanVar-u, MaxSR-u, LW-MSR, BS-u). Moreover, none of the benchmark

24



strategies can yield a significantly higher Sharpe ratio compared to the 1/N strategy. For RRT and BL-

u which outperforms the 1/N, the difference in their Sharpe versus that of the 1/N is not statistically

significant, and the potential gains which can be realized by investors are relatively marginal (for example,

0.731 for RRT vs. 0.710 for 1/N). Consistent with DeMiguel et al. (2009) and Harris and Mazibas (2022),

our finding confirms the well-known hazard of using sample-based estimates of the moments of asset returns

to implement Markowitz’s mean-variance optimization.

We also note that for benchmark strategies, portfolios with short-position always underperform those

without short-position and the difference in the realized performance is quite sizable, especially for MaxSR-u

and LW-MSR framework (e.g., the realized Sharpe ratio of MaxSR can be improved from 0.403 to 0.796),

suggesting that the estimation risk hindered in these optimization methods is so large that regularization

on portfolio weights must be in place. However, the effect of imposing weight constraint is in general less

effective for the GBL strategies, noting that all GBL strategies with short-position outperform their no-short-

position counterparts, GBL is closer to find the optimal allocation points to maximize the portfolio Sharpe

ratio with short-position allowed, suggesting that the sparsity introduced in the estimation of expected

return and covariance using LASSO and Graphical LASSO approach can help to generate robust and stable

portfolios.

For results reported in panel C and panel D, we observe similar patterns to dataset Ind17. First, we

observe a better risk-return profile for the GBL strategies compared with the benchmark strategies. When

transaction costs are not taken into account, half of GBL strategies deliver a Sharpe ratio over 0.82 while

most benchmark strategies have Sharpe ratio well below 0.7. When transaction costs are in presence, GBL-

OG-u remains the only strategy that can significantly outperform the 1/N among the seventeen allocation

strategies that we examine. The magnitude of the potential gains that can actually be realized by investors

are also substantial— GBL-OG-u delivers the highest out-of-sample Sharpe, Sortino, and ROV. Second,

when decision-fusion is used together with portfolio combination (GBL-OS) or GLASSO-Wishart model

(GBL-NG) alone, the resulting portfolio usually underperforms the GBL-OG, which further supports the

argument that adopting decision-fusion, portfolio combination, together with the GLASSO-Wishart model

can reduce the estimation risk than using decision-fusion with any of the two strategies.

4.3 Fama French Size 30 Industry Portfolio

Table 8 reports the realized performance for Fama French 30 Industry portfolios. We noted that the

outperformance of GBL strategies over the benchmark and the BL strategies is greater comparing to Ind17

and FF25. Relative to the 1/N strategy, five GBL strategies yield significant spread in Sharpe ratio (GBL-

NG-u, GBL-OS-u, GBL-OG-u, GBL-OG-c), two yield significantly higher Sharpe ratios post-transaction

costs (GBL-OG-u and GBL-OG-c), while none of the benchmark strategies are able to outperform the

1/N significantly. Although BL-c results in significantly higher Sharpe ratios before and after transaction

costs are considered, the improvement over 1/N is relatively minor, comparing to GBL-OG-u and GBL-

OG-c (e.g., Sharpe ratio of 0.564 for 1/N, 0.686 for BL-c, 0.732 for GBL-OG-c, and 0.759 for GBL-OG-u,

pre-transaction costs). For results reported in panel C and D, we can see that high turnover is the most

troublesome aspect of the performance of GBL-OS strategies. Although GBL-OS-u has the highest perfor-

mance ratios pre-transaction costs, the turnover is sufficiently high that there is a substantial deterioration

in the performance of the strategy, the outperformance over 1/N is no long significant with transaction costs

of 20 bps. Comparing with GBL-OS and GBL-NG, we find that GBL-OG leads to a reasonable turnover.

When transaction costs are in presence, both GBL-OG-u and GBL-OG-c have significantly higher Sharpe

ratio over 1/N at 5% level. Similar to the pattern observed in Ind17 and FF25, we find that imposing

a no-short-position constraint does not seem to be effective in improving performance for GBL strategy,

indeed, GBL-NG-u, GBL-OS-u, and GBL-OG-u all outperformed their short-sale constrained version when

transaction costs are in absence or in presence. To summarize our findings, the newly obtained GBL strategy

can outperform eleven well-studied benchmark strategies by a clear margin in terms of risk-return metrics.

Using regularization methods for estimating the equilibrium expected returns and covariance matrix is able
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to reduce the sensitivity of optimization to the estimation error. For dataset with a large number of risky

assets (e.g., N=17), using optimal portfolio combination together with the GLASSO-Wishart model in the

GBL strategy (GBL-OG) can yield superior performance than using one of the models alone (GBL-OS,

GBL-NG), the outperformance comes with higher risk-reward ratios and more reasonable turn-overs.

Table 8: Out-of-sample Performance for dataset 30Ind (2016:1-2020:12)

Ret Std SR SOR ROV Ret Std SR SOR ROV

Pre-Transaction Cost Post-Transaction Cost

Panel A: Classic allocation strategies
Näıve 0.146 0.24 0.564 0.945 0.328 0.145 0.24 0.559 0.936 0.324
Riskparity 0.112 0.273 0.373 0.647 0.194 0.111 0.273 0.368 0.638 0.191
RRT 0.15 0.193 0.722** 1.187 0.465 0.149 0.193 0.717** 1.178 0.461
MeanVar-u 0.137 0.544 0.232 0.432 0.112 0.045 0.546 0.063 0.114 0.028
MaxSR-u 0.079 0.198 0.346 0.554 0.179 0.058 0.197 0.239 0.377 0.118
Lediot MSR-u 0.078 0.218 0.31 0.518 0.157 0.058 0.217 0.219 0.36 0.106

Panel B: Bayesian approach to estimation risk
BS u 0.134 0.215 0.576 0.936 0.338 0.113 0.214 0.478 0.763 0.265
BL u 0.553 0.691 0.785 1.486 0.513 0.523 0.689 0.743 1.391 0.473

Panel C: Generalized Black-Litterman (GBL) approach
GBL-OS-u 2.028 2.692 0.749** 1.416 0.475 1.471 2.891 0.505 0.832 0.277
GBL-NG-u 0.251 0.177 1.360** 6.949 1.496 0.137 0.177 0.716 2.646 0.461
GBL-OG-u 0.493 0.59 0.818*** 1.488 0.547 0.458 0.59 0.759** 1.364 0.489

Panel D: Portfolio constraints
MaxSR-c 0.379 0.39 0.944 1.713 0.695 0.373 0.39 0.929 1.682 0.676
Lediot MSR-c 0.315 0.361 0.845 1.531 0.581 0.31 0.361 0.83 1.499 0.564
BL-c 0.871 1.194 0.721** 1.197 0.45 0.824 1.184 0.686* 1.123 0.42
GBL-OS-c 2.367 3.539 0.666** 1.169 0.401 2.001 3.562 0.559 0.955 0.316
GBL-NG-c 0.326 0.547 0.577 1.011 0.333 0.275 0.548 0.481 0.826 0.263
GBL-OG-c 0.477 0.594 0.784** 1.39 0.513 0.446 0.594 0.732** 1.286 0.464

This table reports the annualized out-of-sample portfolio average return (Ret), standard deviation (Std),
Sharpe ratio (SR), Sortino ratio (SOR), and return over Value-at-Risk at 99% confidence level (ROV) for
the benchmark strategies and the GBL strategies for Fama French 30 Industry portfolio (Ind30). We present
the significance level from a test of a zero difference between Sharpe ratio of each strategy vs. the 1/N,
where ***, **, * represent 1%, 5%, and 10% test size levels, respectively. For Sharpe ratio, boldfacing
indicates the best-performing asset allocation strategy when applied to a dataset.

4.4 Fama French 10 Size and Short-term reversal Sorted Portfolios

Table 9 reports results for Fama French 10 portfolios sorted by size and short-term reversal. For

the realized performance reported in panel A and B, again, we find that strategies that do not require

optimization (1/N, risk-parity and RRT) tend to outperform those rely on an optimization framework (e.g.,

MeanVar-u, MaxSR-u, Lediot-MSR, BS-u). Furthermore, we find that RRT is in general, more effective in

dealing with estimation risk than the alternative benchmark strategies, it outperforms 1/N at 5% significance

level in two datasets we examine and the performance persists after accounting for the impact of transaction

costs. Our finding is consistent to the argument made by Kirby and Ostdiek (2012) that there is substantial

value of using sample information to guide portfolio selection decisions.

Next, we consider performance for the GBL strategy. For results reported in panel C and panel D, we

find GBL-OG-u, GBL-OS-c, and GBL-NG-c to significantly outperform the 1/N at 5%, 1%, and 10% level,

respectively, when transaction costs are not accounted for. When transaction costs of 20 bps are considered,
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GBL-OG-u and GBL-OS-c can outperform 1/N at 10% and 1%, respectively, suggesting that applying the

decision-fusion model with optimal portfolio combination is a powerful tool to manage the estimation risk.

Table 9: Out-of-sample Performance for dataset FF10 (2016:1-2020:12)

Ret Std SR SOR ROV Ret Std SR SOR ROV

Pre-Transaction Cost Post-Transaction Cost

Panel A: Classic allocation strategies
Näıve 0.183 0.187 0.918 1.591 0.677 0.182 0.188 0.913 1.581 0.671
Riskparity 0.195 0.213 0.866 1.513 0.612 0.194 0.213 0.861 1.504 0.607
RRT 0.173 0.173 0.941 1.617 0.709 0.173 0.173 0.937 1.608 0.703
MeanVar-u 0.1 0.172 0.523 0.901 0.3 0.085 0.172 0.433 0.737 0.236
MaxSR-u 0.035 0.072 0.341 0.539 0.185 0.028 0.073 0.244 0.381 0.126
Lediot MSR-u 0.046 0.088 0.399 0.646 0.22 0.038 0.088 0.31 0.496 0.163

Panel B: Bayesian approach to estimation risk
BS u 0.071 0.096 0.634 1.074 0.4 0.065 0.096 0.57 0.954 0.345
BL u 0.336 0.342 0.95 1.609 0.704 0.328 0.343 0.925 1.558 0.673

Panel C: Generalized Black-Litterman (GBL) approach
GBL-OS-u 0.899 0.942 0.943 1.621 0.685 0.863 0.936 0.911 1.544 0.647
GBL-NG-u 0.379 0.468 0.787 1.124 0.518 0.346 0.467 0.719 1.014 0.453
GBL-OG-u 0.817 0.789 1.022** 1.856 0.789 0.791 0.788 0.991* 1.784 0.748

Panel D: Portfolio constraints
MaxSR-c 0.199 0.178 1.055 1.696 0.869 0.196 0.178 1.039 1.666 0.845
Lediot MSR-c 0.227 0.225 0.963 1.505 0.73 0.223 0.225 0.945 1.473 0.707
BL-c 0.405 0.395 0.996 1.741 0.762 0.397 0.396 0.977 1.701 0.737
GBL-OS-c 1.054 0.931 1.121*** 2.165 0.936 1.021 0.928 1.089*** 2.079 0.886
GBL-NG-c 0.524 0.476 1.078* 2.07 0.876 0.497 0.476 1.021 1.941 0.794
GBL-OG-c 0.73 0.687 1.047 1.829 0.826 0.706 0.686 1.013 1.752 0.779

This table reports the annualized out-of-sample portfolio average return (Ret), standard deviation (Std),
Sharpe ratio (SR), Sortino ratio (SOR), and return over Value-at-Risk at 99% confidence level (ROV) for the
benchmark strategies and the GBL strategies for Fama French 10 portfolios sorted by size and short-term
reversal (FF10). We present the significance level from a test of a zero difference between Sharpe ratio of
each strategy vs. the 1/N, where ***, **, * represent 1%, 5%, and 10% test size levels, respectively. For
Sharpe ratio, boldfacing indicates the best-performing asset allocation strategy when applied to a dataset.

For Ind17, FF25 and Ind30, we find that GBL-OG always outperforms those based on either the

optimal portfolio combination or the GLASSO-Wishart model alone. However, this is not always the case

for datasets with relatively small number of risky assets, i.e., FF10. Comparing results in panel C and E,

we observe GBL-OG-u (based on GLASSO-Wishart covariance) to underperform GBL-OS-c (based on the

sample covariance) before or after transaction costs are accounted for. The difference between GBL-OG

(based on optimal portfolio combination) and GBL-NG (based on the 1/N) is not very obvious, GBL-OG-u

underperforms GBL-NG-c pre-transaction costs but outperforms it post-transaction costs, indicating that

the underperformance in GBL-OG is mainly driven by the use of GLASSO-Wishart model. Our finding is

closely related to Kan et al. (2021) where the authors find portfolios relying on MacKinlay-Pastor single

factor structure and an optimal combination coefficient perform worse in dataset with smaller number of

risky assets. In our GLASSO-Wishart model, the dynamics of Wishart specification is also governed by

one single factor, the discount factor. As discussed in Kan et al. (2021), in most cases, the single factor

structure is not true in population and imposing such a structure introduces a bias. When the optimal

portfolio combination strategy is used, the effect of estimation risk is already reduced substantially, and it

is only beneficial to further impose the single factor structure if the gain from further reduced estimation
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risk outweighs the cost coming from introducing bias. When more risky assets are involved, the estimation

risk are larger, and it is more likely for GBL-OG to outperform GBL-NG and GBL-OS.

5 Robustness Checks

In section 4, we have reported empirical results only for the base-case estimates of asset moments. To

check the sensitivity of our results to various assumptions, we generate results for the Sharpe ratio, Sortino

ratio, and return over Value-at-Risk for all allocation strategies and datasets considered after relaxing the

various assumptions made above. These exercises are based on: (1) alterative risk aversion coefficient;

(2) alternative estimation window size (conditional information that used to estimate asset moments); (3)

alternative reliability measure for the equilibrium expected returns, specifically, we report for a reliability

measure of 0.1625, which corresponds to the mean of the range of values as adopted by the pre-existing

empirical work (see Black and Litterman (1992); He and Litterman (2002); Idzorek (2007); among many

others); (4) alternative holding period for assets in the portfolio; and (5) alternative base models for the

decision-fusion process. We summarize the various robustness checks in Table 10. Because of the large

set of tables for the exercises, we provide an online supplementary document summarizing all the empirical

results. The main finding is that the performance reported in the baseline set of results for various strategies

does not depend significantly on above assumptions.

6 Conclusion

In this paper, we introduce and evaluate a novel GBL approach for modelling and forecasting asset

moments. The main objective of this paper is to address three potential shortcomings within the classic

BL framework: (1) the specification error associated with the CAPM equilibrium; (2) limited discussion in

the dynamic conditional volatilities; and (3) little emphasis on the role of investors, their knowledge and

uncertainty. Our model generalizes the BL framework to incorporate a decision-fusion process, where an

entropy-based multiple classifier combination system nested within the Dempster-Shafer Theory of Evidence

is used for modelling investors’ views. We provide a non-analytical and efficient portfolio shrinkage technique

to obtain the equilibrium expected return, which is able to alleviate the specification error associated

with CAPM, and exploit information inherited in the data to generate more reliable trading strategies.

Finally, we propose a diversification-based GLASSO-Wishart model for the analysis of the realized covariance

matrix of asset returns. Empirically, we find that restricting the matrix of Wishart distribution to a sparse

parameterization by using an L-1 penalty generates a substantial improvement over the 1/N portfolio, for

datasets with relatively large numbers of risky assets.

We use the methodology to compute efficient investment portfolios and compare with a variety of

benchmark strategies from the literature, such as the Markowitz’s mean-variance, maximum-Sharpe ratio,

Bayes-Stein shrinkage of Jorion (1986), covariance shrinkage of Ledoit and Wolf (2003), reward-to-risk timing

of Kirby and Ostdiek (2012), näıve-diversification, and the risk-parity rule. Experiments with four datasets

support the use of our GBL approach. First, we show that the realized performance, as measured by its

Sharpe ratio, Sortino ratio, return over VaR, is considerably higher than alternative rules in the absence or

presence of transaction costs. Second, we find the use of the GBL strategy can stabilize the optimization

problem. By using regularization methods (LASSO, and Graphical LASSO) in the estimation of BLM’s

inputs, we reduce the sensitivity of the optimization to estimation errors, and the results are stable even

when no constraint is in place. We strive to ensure that the GBL approach can be as free as possible from

both the restrictions of theoretical models. Our results are robust to the holding period, the estimation

window size, and the choice of risk aversion parameter, reliability measure, base model.

The GBL strategy can be extended in several directions. First, alternative classifiers-combination

technique, (e.g., Bayesian fusion methods, fuzzy integrals) can also be used in this approach. Second, it
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will be of interest to examine the gains of our proposed strategy in other asset classes, such as bonds,

commodities, and crypto-currencies.
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